$\tilde{\mathbf{X}}{ }^{\mathbf{1}} \mathbf{A}_{\mathbf{1}}, \tilde{\mathbf{a}}^{\mathbf{3}} \mathbf{B}_{\mathbf{1}}, \tilde{\mathbf{A}}{ }^{\mathbf{1}} \mathbf{B}_{\mathbf{1}}$, and $\tilde{\mathbf{B}}{ }^{\mathbf{1}} \mathbf{A}_{\mathbf{1}}$ Electronic States of $\mathbf{P H}_{\mathbf{2}}^{+}$

Timothy J. Van Huis, ${ }^{\dagger}$ Yukio Yamaguchi, C. David Sherrill, ${ }^{\ddagger}$ and Henry F. Schaefer III*
Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602

Received: March 18, 1997; In Final Form: May 28, 1997^{\otimes}

Four electronically low-lying states of PH_{2}^{+}have been investigated using several different ab initio methods and multiple basis sets. This systematic study of both method and basis set provides reliable benchmarking for estimation when high levels of theory are not attainable. Self-consistent field (SCF), two-configuration self-consistent field (TCSCF), complete active space self-consistent field (CASSCF), configuration interaction with single and double excitations (CISD), and CASSCF second-order configuration interaction (SOCI) levels of theory were employed with eight different basis sets of triple- ζ quality. Being the second root of the TCSCF, CASSCF, TCSCF-CISD, and CASSCF-SOCI wave functions, the third excited state $\left(\tilde{\mathrm{B}}^{1} \mathrm{~A}_{1}\right)$ is of particular theoretical interest, for theoretical treatments of states not the lowest of their symmetry are traditionally very difficult. It is confirmed in this study that the four low-lying states of PH_{2}^{+}all have bent structures and are of $C_{2 v}$ symmetry. Also determined in this study for these four electronic states were relative energies and physical properties including dipole moments and harmonic vibrational frequencies with their associated infrared (IR) intensities. These properties were compared with experimental values when possible. At the CISD level with the largest basis set (triple- ζ plus triple polarizations with two higher angular momentum and two diffuse functions $[\operatorname{TZ3P}(2 f, 2 \mathrm{~d})+2 \mathrm{diff}])$, the equilibrium geometries of the four states are predicted to be $r_{\mathrm{e}}=$ $1.415 \AA$ and $\theta_{\mathrm{e}}=93.1^{\circ}\left(\tilde{\mathrm{X}}^{1} \mathrm{~A}_{1}\right), r_{\mathrm{e}}=1.403 \AA$ and $\theta_{\mathrm{e}}=121.7^{\circ}\left(\tilde{\mathrm{a}}^{3} \mathrm{~B}_{1}\right), r_{\mathrm{e}}=1.417 \AA$ and $\theta_{\mathrm{e}}=124.7^{\circ}$ ($\tilde{\mathrm{A}}^{1} \mathrm{~B}_{1}$), and $r_{\mathrm{e}}=1.411 \AA$ and $\theta_{\mathrm{e}}=159.3^{\circ}\left(\tilde{\mathrm{B}}^{1} \mathrm{~A}_{1}\right)$. At this level of theory, the dipole moments of the ground and first three excited states of PH_{2}^{+}are predicted to be $1.056 \mathrm{D}\left(\tilde{\mathrm{X}}^{1} \mathrm{~A}_{1}\right), 0.653 \mathrm{D}\left(\tilde{\mathrm{a}}^{3} \mathrm{~B}_{1}\right), 0.751 \mathrm{D}$ ($\tilde{\mathrm{A}}^{1} \mathrm{~B}_{1}$), and $0.324 \mathrm{D}\left(\tilde{\mathrm{B}}^{1} \mathrm{~A}_{1}\right)$, which are large enough to make these states susceptible to microwave spectroscopic analysis. The energy separations (T_{0} values) between the ground ($\tilde{\mathrm{X}}^{1} \mathrm{~A}_{1}$) and three excited states predicted at the CASSCF-SOCI level with the $\operatorname{TZ3P}(2 \mathrm{f}, 2 \mathrm{~d})+2$ diff basis set are $17.74 \mathrm{kcal} / \mathrm{mol}(0.77$ $\left.\mathrm{eV}, 6200 \mathrm{~cm}^{-1}: \tilde{\mathrm{a}}^{3} \mathrm{~B}_{1} \leftarrow \tilde{\mathrm{X}}^{1} \mathrm{~A}_{1}\right), 45.82 \mathrm{kcal} / \mathrm{mol}\left(1.99 \mathrm{eV}, 16030 \mathrm{~cm}^{-1}: \tilde{\mathrm{A}}^{1} \mathrm{~B}_{1} \leftarrow \tilde{\mathrm{X}}^{1} \mathrm{~A}_{1}\right)$, and $85.05 \mathrm{kcal} /$ mol ($3.69 \mathrm{eV}, 29750 \mathrm{~cm}^{-1} ; \tilde{\mathrm{B}}^{1} \mathrm{~A}_{1} \leftarrow \tilde{\mathrm{X}}^{1} \mathrm{~A}_{1}$). After comparison of theoretical and experimental data for isovalent systems studied at the same level of theory, error bars for the $\tilde{\mathrm{B}}^{1} \mathrm{~A}_{1} \leftarrow \tilde{\mathrm{X}}^{1} \mathrm{~A}_{1}$ splitting are estimated to be $\pm 1.5 \mathrm{kcal} / \mathrm{mol}\left(\pm 525 \mathrm{~cm}^{-1}\right)$. Adiabatic and vertical ionization potentials of PH_{2} are also presented.

I. Introduction

The PH_{2}^{+}molecule is isovalent with CH_{2} and NH_{2}^{+}, and it shares several of these molecules' characteristics, one of which being a multitude of low-lying electronic states. Because of the controversies between theory and experiment surrounding methylene in the past, ${ }^{1-3}$ it has become the benchmark molecule around which many high-level ab initio methods were developed. ${ }^{4}$ Theoretical predictions for methylene are now considered nearly as reliable as experimental results, ${ }^{5-12}$ and relative energetic splittings between electronic states (e.g. $\tilde{\mathrm{a}}^{3} \mathrm{~B}_{1} \leftarrow$ $\tilde{\mathrm{X}}^{1} \mathrm{~A}_{1}$) now approach $0.1 \mathrm{kcal} / \mathrm{mol}$ accuracy. ${ }^{7,11-15}$ Because of this, it was assumed that theory applied to the many species isovalent with $\mathrm{CH}_{2}\left(\mathrm{NH}_{2}^{+}, \mathrm{PH}_{2}^{+}, \mathrm{SiH}_{2}, \mathrm{GeH}_{2} \text {, etc. }\right)^{16-21}$ would yield predictions for these molecules which would be of similar quality. In particular, those molecules containing heavier atoms, such as P, Si, and Ge , can benefit greatly from such predictions, as experimental data on these species is difficult to obtain. This is especially true of the subject of this study, PH_{2}^{+}; the experimental data on the structure and properties of the ground or excited states of the gas-phase PH_{2}^{+}molecule is very limited. This is due primarily to the difficulty of obtaining gasphase ions in significant concentrations (because of their short lifetimes) in order to extract meaningful data. ${ }^{22}$ Therefore, the molecular parameters and energetic predictions that can be

[^0]gained from reliable theory are warranted to better equip spectroscopists in their efforts to characterize the PH_{2}^{+}ion.

The PH_{2}^{+}molecule has gained attention due to its connection to interstellar chemistry. The rise in interest in interstellar chemistry in recent years can be traced to an increased number of compounds detected in the interstellar medium, as well as the increased capabilities of experimentalists to characterize the reactions of these compounds. Theoretical studies have also boosted the understanding of interstellar compounds, due to the fact that ab initio predictions are best suited to molecules in the gas phase at absolute zero temperature. The detection of PN in interstellar clouds ${ }^{23,24}$ as well as the detection of phosphine $\left(\mathrm{PH}_{3}\right)$ in Jupiter's atmosphere ${ }^{25}$ has greatly increased the interest in the ion-molecule chemistry of phosphorus compounds, particularly the hydrides. Such discoveries have lead to kinetic studies of the ion-molecule reactions of the $\mathrm{PH}_{n}(n=1-4)$ series, which have consequently shown that PH_{2}^{+}is a likely candidate as an intermediate in these interstellar reactions. ${ }^{26,27}$ For example,

$$
\mathrm{PH}_{2}^{+}+\mathrm{NH}_{3} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{PH}
$$

or

$$
\mathrm{PH}_{2}^{+}+\mathrm{NH}_{3} \rightarrow \mathrm{PNH}_{3}^{+}+\mathrm{H}_{2}
$$

in which the second reaction is preferred over the first. The potential energy surface of the $\mathrm{PH}_{2}^{+}+\mathrm{CO}$ reaction has been
the subject of a theoretical study by Esseffar, Luna, Mó, and Yánez z^{28} with the hope to gain some insight into the thermodynamics of these interstellar-type reactions.

While experimental determinations of the properties of the PH_{2}^{+}ion have been rather limited, some notable work on the energy separations between low-lying states has been done. Edwards, Jackson, MacLean, and Sarre performed a laser photodissociation study of PH_{2}^{+}in which the yield of P^{+}ions was monitored as a function of the tunable dye laser frequency. ${ }^{31}$ They found a characteristic separation between bands of approximately $1200 \mathrm{~cm}^{-1}$ which they attributed to the bending frequency of the ground state. In the same study, Edwards et al. also attempted to determine the $\tilde{\mathrm{A}}^{1} \mathrm{~B}_{1} \leftarrow \tilde{\mathrm{X}}{ }^{1} \mathrm{~A}_{1}$ energy separation, but were apparently unsuccessful due to noise from rotation bands. ${ }^{31}$ In 1986, Berkowitz, Curtiss, Gibson, Greene, Hillhouse, and Pople ${ }^{32}$ obtained an ion yield curve of PH_{2}^{+} from both the photoionization of PH_{3} and the pyrolysis of benzylphosphine $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{PH}_{2}\right)$. Although the spectrum contained a rather large signal-to-noise ratio, the authors were able to assign the first ion yield increase (i.e. the ionization potential of PH_{2}) at $1262.0 \pm 1.0 \AA(226.5 \pm 0.05 \mathrm{kcal} / \mathrm{mol}, 79220 \pm$ $17 \mathrm{~cm}^{-1}$) to the $\tilde{\mathrm{X}}^{1} \mathrm{~A}_{1}$ state of PH_{2}^{+}. The next increase in ion yield was assigned at approximately $1177 \AA(242.9 \mathrm{kcal} / \mathrm{mol}$, $84960 \mathrm{~cm}^{-1}$), and was defined as the lower limit to the energy levels of the $\tilde{\mathrm{a}}^{3} \mathrm{~B}_{1}$ state, putting the singlet-triplet gap at ≥ 16.4 $\mathrm{kcal} / \mathrm{mol}\left(5740 \mathrm{~cm}^{-1}\right)$. In 1989, Berkowitz and Cho ${ }^{33}$ reinvestigated the photoion yield curve of PH_{2}^{+}, obtaining an independent curve as the result of the photoionization of PH_{2} from the following reaction:

$$
\mathrm{PH}_{3}+\mathrm{H} \rightarrow \mathrm{PH}_{2}+\mathrm{H}_{2}
$$

Using a mass spectrometer, they were able to increase the signal-to-noise ratio and obtain more reliable results, which placed the singlet-triplet splitting at $\left(T_{0}\right) 16.1 \mathrm{kcal} / \mathrm{mol}\left(5630 \mathrm{~cm}^{-1}\right)$. However, they did qualify their results, stating that the energy separation could be shifted by one vibrational quantum ($2.3 \mathrm{kcal} /$ $\mathrm{mol}, 0.1 \mathrm{eV}, 800 \mathrm{~cm}^{-1}$) without seriously affecting the interpretations. Therefore, the most reliable experimental singlet-triplet splitting to date is $16.1-18.4 \mathrm{kcal} / \mathrm{mol} .{ }^{33}$ Berkowitz and Cho ${ }^{33}$ also tentatively assigned the next separation ($\tilde{\mathrm{A}}^{1} \mathrm{~B}_{1}$ $\left.\leftarrow \tilde{\mathrm{X}}{ }^{1} \mathrm{~A}_{1}\right)$ at $44.3 \mathrm{kcal} / \mathrm{mol}\left(15490 \mathrm{~cm}^{-1}\right)$. However, inspection of their published spectrum reveals that this is an estimation, as there is quite a large amount of noise surrounding this feature. To date, there has been no experimental determination of the geometric parameters of the ground and first three excited states of the PH_{2}^{+}molecule.

The theoretical work on PH_{2}^{+}is fairly extensive; however, most work has concentrated on the ground and first excited state. ${ }^{20,34-36}$ Cramer, Dulles, Storer, and Worthington ${ }^{20}$ carried out a systematic study of singlet-triplet gaps, including that of PH_{2}^{+}, at the complete active space self-consistent field (CASSCF), multireference configuration interaction (MRCI), and density functional theory (DFT) levels of theory using Dunning's ${ }^{37}$ aug-cc-pVTZ (minus the f functions) basis set. Bruna and Peyerimhoff ${ }^{38}$ determined the bending potential energy curves (at a constant $\mathrm{P}-\mathrm{H}$ bond length of $1.40 \AA$) of the ground and several excited states at the DZP MRD-CI level; however, the state splittings yielded from their published curves do not appear to match the energy separations which they published ${ }^{39}$ in another study. This may be due to the effect of optimizing the $\mathrm{P}-\mathrm{H}$ bond for each state, but it is not clear if this is the case. Perhaps the most far-reaching study thus far has been that of Balasubramanian. ${ }^{18}$ Using a large triple- ζ basis which included both diffuse functions and higher angular momentum f- and g-type functions (13s10p3d2f1g/7s6p3d2f1g)
in conjunction with the CASSCF second-order configuration interaction (SOCI) method, Balasubramanian was able to perform geometry optimizations of the ground ($\tilde{\mathrm{X}}^{1} \mathrm{~A}_{1}$) and first two excited states ($\tilde{\mathrm{a}}^{3} \mathrm{~B}_{1}$ and $\tilde{\mathrm{A}}^{1} \mathrm{~B}_{1}$). From his results, he predicted (T_{e} values) $17.73 \mathrm{kcal} / \mathrm{mol}\left(6200 \mathrm{~cm}^{-1}\right)$ for the $\tilde{\mathrm{a}}^{3} \mathrm{~B}_{1}$ $\leftarrow \tilde{\mathrm{X}}^{1} \mathrm{~A}_{1}$ energy separation and $45.06 \mathrm{kcal} / \mathrm{mol}\left(15760 \mathrm{~cm}^{-1}\right)$ for the $\tilde{\mathrm{A}}^{1} \mathrm{~B}_{1} \leftarrow \tilde{\mathrm{X}}{ }^{1} \mathrm{~A}_{1}$ separation. Recently, Bauer, Hirst, Batey, Sarre, and Rosmus carried out a CASSCF-MRCI study on PH_{2}^{+}using Dunning's correlation consistent basis sets (ccpVQZ on P and cc-pVTZ on H). ${ }^{40}$ They determined the theoretical potential-energy functions and spectroscopic data for the ground ($\tilde{\mathrm{X}}^{1} \mathrm{~A}_{1}$) and second ($\tilde{\mathrm{A}}^{1} \mathrm{~B}_{1}$) electronic states. On the basis of their data, they were able to obtain reliable potential energy surfaces and harmonic vibrational frequencies for these two states. To date, these have been the most reliable frequencies theoretically determined for this molecule.

The objective of this study is to examine systematically the ground and three excited states of PH_{2}^{+}using self-consistent field (SCF), two-configuration self-consistent field (TCSCF), CASSCF, SCF(TCSCF)-CISD, and CASSCF-SOCI wave functions with eight different basis sets. This study is analagous to a work previously done in this group on $\mathrm{CH}_{2},{ }^{12}$ in which the theoretically predicted energy separations between the ground and first three excited states (as well as the geometrical parameters) were found to be in excellent agreement with experiment. Also, the progression in levels of theory as well as in basis set size shown in our study provides a means for the estimation of molecular properties and energetics when these large levels of theory cannot be employed. While PH_{2}^{+}lacks as extensive an experimental and theoretical background as CH_{2}, important analogies can be drawn between the two which should allow for a greater understanding of these important (six valence $\left.\mathrm{e}^{-}\right) \mathrm{AH}_{2}$ systems. Also, the results of this study should assist further experimental characterization of the low-lying electronic states of PH_{2}^{+}.

II. Electronic Structure Considerations

It is generally agreed ${ }^{18,20,31,33-36,38-40}$ that the $\tilde{\mathrm{X}}^{1} \mathrm{~A}_{1}$ electronic state of the PH_{2}^{+}molecule is bent with $C_{2 v}$ symmetry, and, similar to the $\tilde{\mathrm{a}}^{1} \mathrm{~A}_{1}$ state of both CH_{2} and NH_{2}^{+}, it may be qualitatively expressed as

$$
\begin{equation*}
[\operatorname{core}]\left(4 \mathrm{a}_{1}\right)^{2}\left(2 \mathrm{~b}_{2}\right)^{2}\left(5 \mathrm{a}_{1}\right)^{2} \quad \tilde{\mathrm{X}}^{1} \mathrm{~A}_{1} \tag{1}
\end{equation*}
$$

where [core] stands for

$$
\begin{equation*}
[\text { core }]=\left(1 a_{1}\right)^{2}\left(2 a_{1}\right)^{2}\left(1 b_{2}\right)^{2}\left(3 a_{1}\right)^{2}\left(1 b_{1}\right)^{2} \tag{2}
\end{equation*}
$$

However, due to the low lying $\tilde{\mathrm{B}}{ }^{1} \mathrm{~A}_{1}$ state, it is perhaps better to represent the $\tilde{\mathrm{X}}^{1} \mathrm{~A}_{1}$ state with a two-configuration wave function.

$$
\begin{align*}
& C_{1}[\operatorname{core}]\left(4 \mathrm{a}_{1}\right)^{2}\left(2 \mathrm{~b}_{2}\right)^{2}\left(5 \mathrm{a}_{1}\right)^{2}+ \\
& C_{2}[\operatorname{core}]\left(4 \mathrm{a}_{1}\right)^{2}\left(2 \mathrm{~b}_{2}\right)^{2}\left(2 \mathrm{~b}_{1}\right)^{2} \quad \tilde{\mathrm{X}}^{1} \mathrm{~A}_{1} \tag{3}
\end{align*}
$$

The first and second excited states, $\tilde{a}^{3} B_{1}$ and $\tilde{A}^{1} B_{1}$ (although of different spin symmetry), can both be qualitatively presented by the electron configuration

$$
\begin{equation*}
[\operatorname{core}]\left(4 \mathrm{a}_{1}\right)^{2}\left(2 \mathrm{~b}_{2}\right)^{2}\left(5 \mathrm{a}_{1}\right)\left(2 \mathrm{~b}_{1}\right) \quad \tilde{\mathrm{a}}^{3} \mathrm{~B}_{1}, \tilde{\mathrm{~A}}^{1} \mathrm{~B}_{1} \tag{4}
\end{equation*}
$$

A minimal description of the $\tilde{\mathrm{B}}{ }^{1} \mathrm{~A}_{1}$ state requires at least a twoconfiguration wave function. Unlike its linear first-row analogue, $\tilde{\mathrm{c}}^{1} \Sigma_{\mathrm{g}}^{+} \mathrm{NH}_{2}^{+}$, ${ }^{41}$ the $\tilde{\mathrm{B}}^{1} \mathrm{~A}_{1}$ state of PH_{2}^{+}is bent; thus (in $C_{2 v}$ symmetry)

$$
\begin{align*}
& C_{1}[\operatorname{core}]\left(4 \mathrm{a}_{1}\right)^{2}\left(2 \mathrm{~b}_{2}\right)^{2}\left(2 \mathrm{~b}_{1}\right)^{2}+ \\
& \quad C_{2}[\operatorname{core}]\left(4 \mathrm{a}_{1}\right)^{2}\left(2 \mathrm{~b}_{2}\right)^{2}\left(5 \mathrm{a}_{1}\right)^{2} \quad \tilde{\mathrm{~B}}^{1} \mathrm{~A}_{1} \tag{5}
\end{align*}
$$

is a qualitative representation.
At this time it should be noted that for the $\tilde{X}^{1} \mathrm{~A}_{1}$ state, the CI coefficients, C_{1} and C_{2}, are of opposite signs, while the coefficients for the $\tilde{\mathrm{B}}{ }^{1} \mathrm{~A}_{1}$ state have the same sign. Also note for the $\tilde{\mathrm{X}}^{1} \mathrm{~A}_{1}$ and $\tilde{\mathrm{B}}^{1} \mathrm{~A}_{1}$ states $\left|C_{1}\right|>\left|C_{2}\right|$. The $\tilde{\mathrm{B}}^{1} \mathrm{~A}_{1}$ state may be viewed as a doubly excited state with respect to the $\tilde{\mathrm{X}}^{1} \mathrm{~A}_{1}$ state.

III. Theoretical Methods

Eight basis sets were used in this study, all of triple- ζ (TZ) quality. The TZ basis for P was derived from McLean and Chandler's TZ contraction ${ }^{42}$ of Huzinaga's primitive Gaussian functions ${ }^{43}$ and is designated ($12 \mathrm{~s} 9 \mathrm{p} / 6 \mathrm{~s} 5 \mathrm{p}$). The TZ basis for H was obtained from Dunning's TZ contraction ${ }^{44}$ of Huzinaga's primitive Gaussian functions ${ }^{45}$ and it is designated ($5 \mathrm{~s} / 3 \mathrm{~s}$). The orbital exponents of the polarization functions were $\alpha_{d}(\mathrm{P})=$ 1.20 and 0.300 and $\alpha_{\mathrm{p}}(\mathrm{H})=1.50$ and 0.375 for double polarization (TZ2P); and $\alpha_{d}(P)=2.40,0.600$, and 0.150 and $\alpha_{\mathrm{p}}(\mathrm{H})=3.00,0.750$, and 0.1875 for triplet polarization (TZ3P). Six Cartesian d-like and 10 Cartesian f-like functions were used throughout.

The orbital exponents of the higher angular momentum functions were $\alpha_{\mathrm{f}}(\mathrm{P})=0.450$ and $\alpha_{\mathrm{d}}(\mathrm{H})=1.00$ for single higher angular momentum functions [TZ2P(f,d)] and $\alpha_{f}(\mathrm{P})=0.900$ and 0.225 and $\alpha_{d}(H)=2.00$ and 0.500 for double higher angular momentum functions [TZ3P(2f2d)]. The diffuse function orbital exponents were determined in an "even tempered sense" as a mathematical extension of the primitive set, according to the formula of Lee and Schaefer, ${ }^{46}$ with $\alpha_{s}(\mathrm{P})=0.034$ 63, $\alpha_{\mathrm{p}}(\mathrm{P})$ $=0.03138$, and $\alpha_{s}(\mathrm{H})=0.03016$ for single diffuse functions (TZ2P+diff) and $\alpha_{s}(P)=0.03463,0.01111, \alpha_{p}(P)=0.03138$, 0.01161 , and $\alpha_{s}(H)=0.03016,0.009247$ for double diffuse functions (TZ3P+2diff). The largest basis set, $\operatorname{TZ3P}(2 f,-$ 2d) +2 diff, contained 119 contracted Gaussian functions with a contraction scheme of (14s11p3d2f/8s7p3d2f) for P and (7s3p2d/ 5s3p2d) for H .

The geometries of the lowest three electronic states were optimized via standard analytic derivative methods ${ }^{47-49}$ while it was necessary to optimize the geometry of the $\tilde{\mathrm{B}}^{1} \mathrm{~A}_{1}$ state via finite differences of energy points. Harmonic vibrational frequencies and associated IR intensities were determined analytically for the lowest three states at the SCF^{50-53} and TCSCF ${ }^{54,55}$ levels of theory and by finite differences of analytic gradients for the CISD $^{56-59}$ wave functions. It was necessary to obtain the harmonic vibrational frequencies and associated IR intensities for the $\tilde{\mathrm{B}}^{1} \mathrm{~A}_{1}$ state by finite differences of energy points and dipole moments, respectively, at the TCSCF-CISD level of theory. It should be noted that geometrical parameters (bond lengths and bond angles) obtained by the energy point optimizations in this study are comparable to analytically optimized parameters to at least 10^{-7}, and vibrational frequencies are converged to the tenth of a $\mathrm{cm}^{-1} .60$ All computations were performed using the PSI 2.0 suite of ab initio quantum mechanical programs. ${ }^{61}$ Cartesian gradients were optimized to at least $10^{-6} \mathrm{au}$. The energies of SCF, CISD, and CASSCF wave functions were converged to 10^{-12} hartrees.

One-configuration SCF wave functions may be used to obtain the zeroth-order descriptions of the lowest three states. However, the $\tilde{\mathrm{X}}^{1} \mathrm{~A}_{1}$ and $\tilde{\mathrm{B}}^{1} \mathrm{~A}_{1}$ states may be more appropriately described as the first (eq3) and second (eq 5) eigenvectors, respectively, of the TCSCF secular equation. Dynamical correlation effects were included by using SCF(TCSCF)-CISD,

CASSCF, ${ }^{62-64}$ and CASSCF-SOCI levels of theory. In all the CISD and SOCI procedures, the core ($\mathrm{P} 1 \mathrm{~s}, 2 \mathrm{~s}$, and 2 p -like) orbitals were frozen and a single virtual ($\mathrm{P} 1 \mathrm{~s}^{*}$-like) orbital was deleted. With the $\operatorname{TZ3P}(2 f, 2 d)+2$ diff basis set, the numbers of configuration state functions (CSFs) for the CISD wave functions in $C_{2 v}$ symmetry are $28150\left(\tilde{\mathrm{X}}^{1} \mathrm{~A}_{1}\right.$, TCSCF reference $)$, 20732 ($\tilde{\mathrm{a}}^{3} \mathrm{~B}_{1}$, SCF reference), 20656 ($\tilde{\mathrm{A}}^{1} \mathrm{~B}_{1}$, SCF reference), and $28150\left(\tilde{\mathrm{~B}}^{1} \mathrm{~A}_{1}\right.$, TCSCF reference). The CASSCF and CASSCF-SOCI energies were determined at the CISD optimized geometries with the same basis set. Two active spaces were selected for the CASSCF wave functions. The first, which we will denote as CAS I, comprised the six (valence) electrons in six (valence) molecular orbitals ($6 \mathrm{e}^{-} / 6 \mathrm{MO}$). The numbers of the CSFs for the four states were $56\left(\tilde{\mathrm{X}}^{1} \mathrm{~A}_{1}\right), 51\left(\tilde{\mathrm{a}}^{3} \mathrm{~B}_{1}\right), 39$ ($\tilde{\mathrm{A}}^{1} \mathrm{~B}_{1}$), and $56\left(\tilde{\mathrm{~B}}^{1} \mathrm{~A}_{1}\right)$, respectively. The second active space chosen, CAS II, comprised the first active space with the addition of the $6 a_{1}, 3 b_{1}$, and $3 b_{2}$ virtual (Rydberg) orbitals, resulting in a six electron/nine molecular orbital ($6 \mathrm{e}^{-/ 9} \mathrm{MO}$) active space. The importance of these virtual orbitals was seen in their orbital energies as expressed in the SCF and TCSCF wave functions when diffuse functions were incorporated into the basis set. Using this active space, the numbers of the CSFs for the four states were $684\left(\tilde{\mathrm{X}}^{1} \mathrm{~A}_{1}\right), 864\left(\widetilde{\mathrm{a}}^{3} \mathrm{~B}_{1}\right), 608\left(\tilde{\mathrm{~A}}^{1} \mathrm{~B}_{1}\right)$, and $684\left(\tilde{\mathrm{~B}}^{1} \mathrm{~A}_{1}\right)$, respectively. In order to construct a CASSCF wave function for the $\tilde{\mathrm{B}}{ }^{1} \mathrm{~A}_{1}$ state, the molecular orbitals were optimized following the second root of the CASSCF Hamiltonian matrix.

Two second-order (SO) CI wave functions were constructed. ${ }^{65}$ The first, CAS I SOCI, included all single and double excitations out of the CAS I references. With the largest basis set [TZ3P($2 \mathrm{f}, 2 \mathrm{~d}$) +2 diff], the numbers of CSFs for the CAS I SOCI wave functions in $C_{2 v}$ symmetry are $313480\left(\tilde{\mathrm{X}}^{1} \mathrm{~A}_{1}\right), 472296\left(\tilde{\mathrm{a}}^{3} \mathrm{~B}_{1}\right)$, $299588\left(\tilde{\mathrm{~A}}^{1} \mathrm{~B}_{1}\right)$, and $313480\left(\tilde{\mathrm{~B}}^{1} \mathrm{~A}_{1}\right)$, respectively. The second, CAS II SOCI, wave functions were constructed from single and double excitations from the CAS II references. With the TZ3P($2 \mathrm{f}, 2 \mathrm{~d}$) +2 diff basis set, the numbers of CSFs for the CAS II SOCI wave functions in $C_{2 v}$ symmetry are $1648704\left(\tilde{\mathrm{X}}^{1} \mathrm{~A}_{1}\right)$, $\left.2655766\left(\tilde{a}^{3}{ }^{3}\right)_{1}\right), 1613948\left(\tilde{\mathrm{~A}}^{1} \mathrm{~B}_{1}\right)$, and $1648704\left(\tilde{\mathrm{~B}}^{1} \mathrm{~A}_{1}\right)$, respectively.

IV. Results and Discussion

It has been found in this study that all four low-lying states of the PH_{2}^{+}molecule have bent equilibrium structures with $C_{2 v}$ symmetry. Table 1 contains total energies, equilibrium geometries, dipole moments, harmonic vibrational frequencies with their associated IR intensities, and zero-point energies for the ground state ($\tilde{\mathrm{X}}^{1} \mathrm{~A}_{1}$) predicted at 16 levels of theory for a TCSCF reference. Tables 2 and 3 contain the predicted total energies and geometrical parameters of the first ($\widetilde{\mathrm{a}}^{3} \mathrm{~B}_{1}$) and second ($\tilde{\mathrm{A}}^{1} \mathrm{~B}_{1}$) excited states, respectively. The corresponding quantities of the third excited state ($\tilde{\mathrm{B}}^{1} \mathrm{~A}_{1}$) are given in Table 4 for the TCSCF reference. The dipole moments of the PH_{2}^{+} ion were determined with respect to the center of mass. Tables 5 and 6 contain the total energies for all four electronic states in $\mathrm{kcal} / \mathrm{mol}$ for the CAS I and CAS I SOCI, CAS II and CAS II SOCI levels of theory, respectively. Table 7 contains the relative energies of the first three excited states with respect to the ground state at the SCF, TCSCF, CAS I, and CAS II levels of theory. Table 8 contains the same information at the CISD, CAS I SOCI, and CAS II SOCI levels of theory. In Tables 7 and 8 , the zero-point vibrational energy (ZPVE) corrected energy separations (T_{0} values) were determined using the CISD harmonic vibrational frequencies with the same basis set.

TABLE 1: Two-Reference Configuration Theoretical Predictions of the Total Energy (in hartrees, Subtract 340), Bond Length (in Å), Bond Angle (in degrees), Dipole Moment (in debye), Harmonic Vibrational Frequencies (in $\mathbf{c m}^{-1}$), Infrared Intensities (in Parentheses in $\mathbf{k m} / \mathrm{mol}$), and Zero-Point Vibrational Energy ($\mathbf{Z P V E}$ in $\mathrm{kcal} / \mathrm{mol}$) for the $\tilde{\mathbf{X}}^{\mathbf{1}} \mathbf{A}_{\mathbf{1}}$ Ground State of the $\mathbf{P H}_{\mathbf{2}}^{+}$ Molecule

level of theory	energy	r_{e}	θ_{e}	μ_{e}	$\omega_{1}\left(\mathrm{a}_{1}\right)$	$\omega_{2}\left(\mathrm{a}_{1}\right)$	$\omega_{3}\left(\mathrm{~b}_{2}\right)$	
TZ2P TCSCF	-1.562932	1.4060	94.85	1.0583	$2538(1.1)$	$1231(7.4)$	$2545(0.2)$	9.026
TZ2P+diff TCSCF	-1.563146	1.4059	94.83	1.0634	$2539(1.2)$	$1230(8.9)$	$2545(0.3)$	9.026
TZ3P TCSCF	-1.564685	1.4052	94.89	1.0210	$2566(1.1)$	$1234(7.4)$	$2573(0.4)$	9.111
TZ3P+2diff TCSCF	-1.564769	1.4052	94.89	1.0228	$2566(1.1)$	$1234(7.7)$	$2572(0.4)$	9.110
TZ2P(f,d) TCSCF	-1.565500	1.4060	95.23	1.0724	$2561(0.9)$	$1230(9.2)$	$2567(0.3)$	9.089
TZ2P(f,d)+diff TCSCF	-1.565717	1.4060	95.22	1.0781	$2561(1.0)$	$1230(10.8)$	$2567(0.4)$	9.090
TZ3P(2f,2d) TCSCF	-1.566772	1.4048	95.25	1.0469	$2562(0.8)$	$1231(9.1)$	$2569(0.3)$	9.094
TZ3P(2f,2d)+2diff TCSCF	-1.566885	1.4048	95.26	1.0488	$2563(0.8)$	$1231(9.4)$	$2569(0.3)$	9.097
TZ2P TC-CISD	-1.671784	1.4181	92.72	1.0424	$2404(0.9)$	$1155(5.7)$	$2410(0.4)$	8.534
TZ2P+diff TC-CISD	-1.672070	1.4180	92.67	1.0462	$2404(1.0)$	$1155(6.9)$	$2409(0.5)$	8.532
TZ3P TC-CISD	-1.674464	1.4152	92.93	0.9866	$2449(0.9)$	$1169(5.4)$	$2456(0.7)$	8.684
TZ3P+2diff TC-CISD	-1.674682	1.4152	92.91	0.9897	$2448(0.9)$	$1168(5.7)$	$2455(0.7)$	8.681
TZ2P(f,d) TC-CISD	-1.688123	1.4178	93.06	1.0990	$2443(1.7)$	$1151(6.2)$	$2451(1.2)$	8.642
TZ2P(f,d)+diff TC-CISD	-1.688332	1.4177	93.03	1.1029	$2444(1.7)$	$1151(7.3)$	$2451(1.3)$	8.643
TZ3P(2f,2d) TC-CISD	-1.692026	1.4150	93.04	1.0544	$2456(1.5)$	$1155(5.6)$	$2466(1.3)$	8.689
TZ3P(2f,2d)+2diff TC-CISD	-1.692156	1.4150	93.05	1.0559	$2457(1.5)$	$1155(5.8)$	$2467(1.3)$	8.690
experimental fundamental ${ }^{31}$							~ 1200	

TABLE 2: Theoretical Predictions of the Total Energy (in hartrees, Subtract 340), Bond Length (in A), Bond Angle (in degrees), Dipole Moment (in debye), Harmonic Vibrational Frequencies (in $\mathbf{c m}^{-1}$), Infrared Intensities (in Parentheses in $\mathbf{k m} / \mathrm{mol}$), and Zero-Point Vibrational Energy (ZPVE in $\mathrm{kcal} / \mathrm{mol}$) for the a ${ }^{\mathbf{3}} \mathbf{B}_{1}$ State of the $\mathbf{P H}_{\mathbf{2}}^{+}$Molecule

level of theory	energy	r_{e}	θ_{e}	μ_{e}	$\omega_{1}\left(\mathrm{a}_{1}\right)$	$\omega_{2}\left(\mathrm{a}_{1}\right)$	$\omega_{3}\left(\mathrm{~b}_{2}\right)$	ZPVE
TZ2P SCF	-1.535715	1.3931	120.87	0.5730	$2542(37.1)$	$1078(4.9)$	$2614(104.7)$	8.911
TZ2P+diff SCF	-1.535869	1.3930	120.89	0.5822	$2542(36.8)$	$1077(5.4)$	$2614(105.7)$	8.911
TZ3P SCF	-1.537260	1.3927	120.81	0.5931	$2568(35.1)$	$1079(4.8)$	$2639(103.0)$	8.987
TZ3P+2diff SCF	-1.537322	1.3927	120.82	0.5949	$2568(35.0)$	$1079(4.9)$	$2639(103.5)$	8.986
TZ2P(f,d) SCF	-1.537402	1.3936	120.88	0.5754	$2559(36.8)$	$1075(4.8)$	$2631(104.9)$	8.958
TZ2P(f,d)+diff SCF	-1.537569	1.3936	120.89	0.5844	$2559(36.5)$	$1075(5.2)$	$2631(105.7)$	8.957
TZ3P(2f,2d) SCF	-1.538410	1.3925	120.84	0.5937	$2563(34.6)$	$1077(4.7)$	$2634(101.9)$	8.969
TZ3P(2f,2d)+2diff SCF	-1.538523	1.3925	120.84	0.5956	$2564(34.5)$	$1077(4.8)$	$2635(102.1)$	8.972
TZ2P CISD	-1.644897	1.4047	121.93	0.6506	$2406(40.3)$	$995(1.4)$	$2481(125.3)$	8.409
TZ2P+diff CISD	-1.645094	1.4047	121.93	0.6587	$2406(39.9)$	$994(1.6)$	$2481(126.2)$	8.407
TZ3P CISD	-1.647173	1.4028	121.66	0.6355	$2446(37.6)$	$994(1.5)$	$2524(121.9)$	8.527
TZ3P+2diff CISD	-1.647360	1.4029	121.66	0.6382	$2445(37.7)$	$994(1.6)$	$2522(122.6)$	8.522
TZ2P(f,d) CISD	-1.659611	1.4056	121.77	0.6670	$2436(43.5)$	$991(1.1)$	$2512(131.3)$	8.490
TZ2P(f,d)+diff CISD	-1.659763	1.4056	121.78	0.6746	$2436(43.2)$	$991(1.2)$	$2511(132.0)$	8.490
TZ3P(2f,2d) CISD	-1.662969	1.4033	121.68	0.6514	$2451(40.2)$	$997(1.2)$	$2527(126.8)$	8.542
TZ3P(2f,2d)+2diff CISD	-1.663093	1.4032	121.67	0.6533	$2452(40.1)$	$997(1.2)$	$2528(127.1)$	8.544

TABLE 3: Theoretical Predictions of the Total Energy (in hartrees, Subtract 340), Bond Length (in A), Bond Angle (in degrees), Dipole Moment (in debye), Harmonic Vibrational Frequencies (in $\mathbf{c m}^{-1}$), Infrared Intensities (in Parentheses in $\mathbf{k m} / \mathbf{m o l}$), and Zero-Point Vibrational Energy (ZPVE in kcal/mol) for the $\tilde{\mathbf{A}}^{\mathbf{1}} \mathbf{B}_{\mathbf{1}}$ State of the $\mathbf{P H}_{\mathbf{2}}^{+}$Molecule

level of theory	energy	r_{e}	θ_{e}	μ_{e}	$\omega_{1}\left(\mathrm{a}_{1}\right)$	$\omega_{2}\left(\mathrm{a}_{1}\right)$	$\omega_{3}\left(\mathrm{~b}_{2}\right)$	ZPVE
TZ2P SCF	-1.474156	1.4014	125.85	0.6536	$2457(60.7)$	$1032(0.5)$	$2540(184.9)$	8.619
TZ2P+diff SCF	-1.474266	1.4014	125.87	0.6619	$2457(60.2)$	$1031(0.7)$	$2540(186.2)$	8.618
TZ3P SCF	-1.475878	1.4009	125.77	0.6079	$2484(57.6)$	$1033(1.0)$	$2567(183.0)$	8.697
TZ3P+2diff SCF	-1.475947	1.4009	125.76	0.6125	$2484(57.9)$	$1032(1.0)$	$2566(183.6)$	8.695
TZ2P(f,d) SCF	-1.477831	1.4014	126.22	0.7052	$2477(58.5)$	$1028(0.5)$	$2561(194.7)$	8.673
TZ2P(f,d)+diff SCF	-1.477943	1.4015	126.25	0.7130	$2477(58.0)$	$1023(0.6)$	$2561(195.9)$	8.672
TZ3P(2ff2d) SCF	-1.479179	1.4004	126.23	0.6748	$2482(54.9)$	$1030(1.0)$	$2565(192.0)$	8.688
TZ3P(2f,2d)+2diff SCF	-1.479269	1.4004	126.22	0.6775	$2483(55.0)$	$1030(1.1)$	$2566(192.3)$	8.689
TZ2P CISD	-1.594851	1.4200	124.47	0.7530	$2274(49.3)$	$968(0.0)$	$2338(174.1)$	7.976
TZ2P+diff CISD	-1.595030	1.4200	124.49	0.7607	$2273(48.9)$	$967(0.0)$	$2336(175.4)$	7.972
TZ3P CISD	-1.597283	1.4182	124.23	0.6936	$2314(48.0)$	$966(0.0)$	$2377(173.7)$	8.086
TZ3P+2diff CISD	-1.597500	1.4183	124.22	0.6996	$2312(48.4)$	$964(0.0)$	$2376(174.6)$	8.080
TZ2P(f,d) CISD	-1.612473	1.4194	124.84	0.8008	$2315(53.1)$	$959(0.1)$	$2381(192.6)$	8.085
TZ2P(f,d)+diff CISD	-1.612595	1.4194	124.85	0.8079	$2315(52.8)$	$959(0.1)$	$2381(193.7)$	8.084
TZ3P(2f,2d) CISD	-1.616314	1.4172	124.75	0.7479	$2331(50.2)$	$965(0.0)$	$2397(187.9)$	8.139
TZ3P(2f,2d)+2diff CISD	-1.616424	1.4172	124.74	0.7507	$2331(50.3)$	$965(0.0)$	$2397(188.2)$	8.139

A. Geometries. Regarding theoretical geometries, it is important to recognize the trends imposed by both the size of the basis set used as well as the level of correlation achieved. Larger basis sets tend to contract bonds, while more complete treatments of electron correlation tend to lengthen bonds. ${ }^{66-68}$ While the use of the $\operatorname{TZ3P}(2 f, 2 d)+2 d i f f$ basis in conjunction with the CISD method may underestimate bond lengths and
bond angles, it is important to examine the trends in basis set size. The use of larger basis sets becomes necessary in the CASSCF-SOCI procedures to determine if theoretically predicted energetic separations between states are convergent and reliable.

At the TZ3P(2f,2d)+2diff TCSCF-CISD level of theory, the bond length $\left(r_{\mathrm{e}}\right)$ of the $\tilde{\mathrm{X}}^{1} \mathrm{~A}_{1}$ state of PH_{2}^{+}was predicted to be

TABLE 4: Two Reference Configuration Theoretical Predictions of the Total Energy (in hartrees, Subtract 340), Bond Length (in \AA), Bond Angle (in degrees), Dipole Moment (in debye), Harmonic Vibrational Frequencies (in $\mathbf{c m}^{-1}$), Infrared Intensities (in Parentheses in $\mathbf{k m} / \mathrm{mol}$), and Zero-Point Vibrational Energy (ZPVE in $\mathrm{kcal} / \mathrm{mol}$) for the $\tilde{\mathbf{B}}^{\mathbf{1}} \mathbf{A}_{\mathbf{1}}$ State of the $\mathbf{P H}_{\mathbf{2}}^{+}$Molecule

level of theory	energy	r_{e}	θ_{e}	μ_{e}	$\omega_{1}\left(\mathrm{a}_{1}\right)$	$\omega_{2}\left(\mathrm{a}_{1}\right)$	$\omega_{3}\left(\mathrm{~b}_{2}\right)$
TZ2P TCSCF	-1.395011	1.4002	159.10	0.3538	$2445(22.8)$	$1032(3.4)$	$2555(616.8)$
TZ2P+diff TCSCF	-1.395076	1.4001	159.10	0.3563	$2445(22.5)$	$1033(3.8)$	$2555(618.8)$
TZ3P TCSCF	-1.395951	1.3997	158.90	0.3213	$2464(20.1)$	$1033(3.0)$	$2578(582.3)$
TZ3P+2diff TCSCF	-1.395999	1.3997	158.89	0.3276	$2463(20.3)$	$1034(3.2)$	$2578(583.0)$
TZ2P(f,d) TCSCF	-1.397430	1.4011	158.40	0.3727	$2454(25.1)$	$1037(3.1)$	$2570(612.2)$
TZ2P(f,d)+diff TCSCF	-1.397497	1.4012	158.39	0.3754	$2454(24.4)$	$1037(3.4)$	$2569(613.4)$
TZ3P(2f,2d) TCSCF	-1.398239	1.4007	158.12	0.3411	$2455(21.7)$	$1040(3.0)$	$2569(583.5)$
TZ3P(2f,2d)+2diff TCSCF	-1.398296	1.4007	158.11	0.3433	$2455(21.6)$	$1040(3.2)$	$2569(583.8)$
TZ2P TC-CISD	-1.530565	1.4121	159.63	0.3420	$2304(19.8)$	$1069(2.1)$	$2427(529.4)$
TZ2P+diff TC-CISD	-1.530736	1.4121	159.65	0.3429	$2303(19.6)$	$1069(2.4)$	$2427(531.4)$
TZ3P TC-CISD	-1.532365	1.4101	159.49	0.3020	$2334(17.7)$	$1063(1.6)$	$2469(501.7)$
TZ3P+2diff TC-CISD	-1.532568	1.4102	159.47	0.3081	$2333(17.9)$	$1065(1.8)$	$2468(502.5)$
TZ2P(f,d) TC-CISD	1.548911	1.4118	159.62	0.3630	$2338(21.3)$	$1056(1.8)$	$2467(550.7)$
TZ2P(f,d)+diff TC-CISD	-1.549008	1.4119	159.63	0.3648	$2338(21.0)$	$1056(2.1)$	$2466(551.9)$
TZ3P(2f,2d) TC-CISD	-1.552094	1.4110	159.25	0.3216	$2340(18.6)$	$1059(1.8)$	$2470(523.2)$
TZ3P(2f,2d)+2diff TC-CISD	-1.552175	1.4110	159.25	0.3235	$2340(18.7)$	$1060(2.0)$	$2470(523.4)$

TABLE 5: Total CASSCF (CAS I, $6 \mathrm{e}^{-} / 6 \mathrm{MO}$) and CASSCF SOCI Energies (in hartrees, Subtract 340) at the CISD Optimized Geometries for Several Electronic States of $\mathbf{P H}_{\mathbf{2}}^{+}$

level of theory	$\tilde{\mathrm{X}}^{1} \mathrm{~A}_{1}$ TCSCF a	$\tilde{\mathrm{a}}^{3} \mathrm{~B}_{1}$ SCF a	$\tilde{\mathrm{~A}}^{1} \mathrm{~B}_{1}$ SCF a	$\tilde{\mathrm{~B}}^{1} \mathrm{~A}_{1} \mathrm{TCSCF}^{a}$
TZ2P CAS I	-1.595628	-1.569571	-1.519816	-1.444576
TZ2P+diff CAS I	-1.595827	-1.569707	-1.519929	-1.444650
TZ3P CAS I	-1.597134	-1.570873	-1.521321	-1.445530
TZ3P+2diff CAS I	-1.597218	-1.570942	-1.521413	-1.445613
TZ2P(ff,d) CAS I	-1.598052	-1.571182	-1.524099	-1.447373
TZ2P(f,d)+diff CAS I	-1.598250	-1.571331	-1.524219	-1.447456
TZ3P(2f,2d) CAS I	-1.599283	-1.572177	-1.525399	-1.448307
TZ3P(2f,2d)+2diff CAS I	-1.599391	-1.572285	-1.525498	-1.448369
TZ2P CAS I SOCI	-1.675662	-1.649604	-1.600868	-1.538044
TZ2P+diff CAS I SOCI	-1.675948	-1.649798	-1.601047	-1.538228
TZ3P CAS I SOCI	-1.678340	-1.651901	-1.603348	-1.540014
TZ3P+2diff CAS I SOCI	-1.678564	-1.652095	-1.603574	-1.540229
TZ2P(f,d) CAS I SOCI	-1.692431	-1.665013	-1.619250	-1.557359
TZ2P(f,d)+diff CAS I SOCI	-1.692638	-1.665162	-1.619373	-1.557467
TZ3P(ff,2d) CAS I SOCI	-1.696415	-1.668488	-1.623236	-1.560819
TZ3P(2f,2d)+2diff CAS I SOCI	-1.696545		-1.623347	-1.560903

${ }^{a}$ Reference wave function.
TABLE 6: Total CASSCF (CAS II, $6 \mathrm{e}^{-} / 9 \mathrm{MO}$) and CASSCF SOCI Energies (in hartrees, Subtract 340) at the CISD Optimized Geometries for Several Electronic States of $\mathbf{P H}_{2}^{+}$

level of theory	$\tilde{\mathrm{X}}^{1} \mathrm{~A}_{1}$ TCSCF a	$\tilde{\mathrm{a}}^{3} \mathrm{~B}_{1}$ SCF a	$\tilde{\mathrm{~A}}^{1} \mathrm{~B}_{1}$ SCF a	$\tilde{\mathrm{~B}}^{1} \mathrm{~A}_{1}$ TCSCF a
TZ2P CAS II	-1.625736	-1.595984	-1.543061	-1.477367
TZ2P+diff CAS II	-1.625927	-1.596112	-1.543170	-1.477461
TZ3P CAS II	-1.627257	-1.597180	-1.544437	-1.477764
TZ3P+2diff CAS II	-1.627345	-1.597248	-1.544526	-1.477861
TZ2P(f,d) CAS II	-1.628958	-1.599190	-1.549268	-1.480110
TZ2P(ff,d)+diff CAS II	-1.629143	-1.599334	-1.549381	-1.480205
TZ3P(2ff2d) CAS II	-1.630411	-1.600229	-1.550632	-1.480769
TZ3P(2f,2d)+2diff CAS II	-1.630521	-1.600343	-1.550730	-1.480840
TZ2P CAS II SOCI	-1.677646	-1.651194	-1.602355	-1.539725
TZ2P+diff CAS II SOCI	-1.677935	-1.651389	-1.602537	-1.539911
TZ3P CAS II SOCI	-1.680348	-1.653494	-1.604838	-1.541764
TZ3P+2diff CAS II SOCI	-1.680577	-1.653692	-1.605069	-1.541983
TZ2P(f,d) CAS II SOCI	-1.695054	-1.667107	-1.621217	-1.559614
TZ2P(f,d)+diff CAS II SOCI	-1.695262	-1.667256	-1.621340	-1.559723
TZ3P(2f,2d) CAS II SOCI	-1.699156	-1.670659	-1.625279	-1.563187
TZ3P(2f,2d)+2diff CAS II SOCI	-1.699286	-1.670783	-1.625391	-1.563272

${ }^{a}$ Reference ave function.
$1.415 \AA$, and the bond angle is predicted to be 93.1°-a value that is significantly smaller (by 15°) than that predicted for the $\tilde{\mathrm{a}}^{1} \mathrm{~A}_{1} \mathrm{NH}_{2}^{+}$molecule at the same level of theory. ${ }^{41}$ The singlereference predictions for these properties were an r_{e} value of $1.412 \AA$ and a θ_{e} value of 92.7°. Adding nondynamical correlation to the ground state in the form of an additional configuration served to slightly increase the bond length and widen the bond angle. The difference in the magnitude of the bond angle in NH_{2}^{+}and PH_{2}^{+}may be qualitatively explained by
the reduced ability of P orbitals (3 s and 3 p) to hybridize. Balasubramanian predicted ${ }^{18}$ in his CASSCF-SOCI study the bond length to be $1.426 \AA$ and the bond angle to be 92.6°. Bauer et al., in their CASSCF-MRCI potential energy function study, ${ }^{40}$ predicted an r_{e} of $1.423 \AA$ and a θ_{e} of 92.9°. From these comparisons, it is possible to see that additional excitations in the CI space tend to significantly increase r_{e}; however, the inclusion of additional correlation has little effect on the bond angle. Due to the lack of experimental data on the geometries

TABLE 7: Relative Energies T_{e} (in $\mathrm{kcal} / \mathrm{mol}, T_{0}$ Value in Parentheses) Using SCF, TCSCF, and CASSCF (CAS I and CAS II) Methods for Several Electronic States of the $\mathbf{P H}_{2}^{+}$Molecule

level of theory	$\tilde{\mathrm{X}}^{1} \mathrm{~A}_{1}$ TCSCF a	$\tilde{\mathrm{a}}^{3} \mathrm{~B}_{1} \mathrm{SCF}^{\text {a }}$	$\tilde{\mathrm{A}}^{1} \mathrm{~B}_{1} \mathrm{SCF}^{a}$	$\tilde{\mathrm{B}}^{1} \mathrm{~A}_{1} \mathrm{TCSCF}^{a}$
TZ2P (TC)SCF	0.0	17.079 (16.964)	55.708 (55.301)	105.372 (104.970)
TZ2P+diff (TC)SCF	0.0	17.117 (17.002)	55.773 (55.365)	105.466 (105.064)
TZ3P (TC)SCF	0.0	17.209 (17.085)	55.727 (55.313)	105.882 (105.455)
TZ3P+2diff (TC)SCF	0.0	17.223 (17.099)	55.737 (55.322)	105.905 (105.480)
TZ2P(f,d) (TC)SCF	0.0	17.632 (17.501)	55.013 (54.597)	105.466 (105.042)
TZ2P(f,d)+diff (TC)SCF	0.0	17.663 (17.530)	55.079 (54.661)	105.560 (105.134)
TZ3P(2f,2d) (TC)SCF	0.0	17.797 (17.672)	54.965 (54.559)	105.756 (105.330)
TZ3P(2f,2d)+2diff (TC)SCF	0.0	17.797 (17.672)	54.980 (54.572)	105.791 (105.363)
TZ2P CAS I	0.0	16.351 (16.226)	47.573 (47.015)	94.787 (94.544)
TZ2P+diff CAS I	0.0	16.391 (16.266)	47.627 (47.067)	94.865 (94.623)
TZ3P CAS I	0.0	16.479 (16.322)	47.573 (46.975)	95.133 (94.835)
TZ3P+2diff CAS I	0.0	16.488 (16.329)	47.568 (46.967)	95.134 (94.838)
TZ2P(f,d) CAS I	0.0	16.861 (16.709)	46.406 (45.849)	94.553 (94.290)
TZ2P(f,d)+diff CAS I	0.0	16.892 (16.739)	46.455 (45.896)	94.625 (94.360)
$\operatorname{TZ3P}(2 f, 2 d) \text { CAS I }$	0.0	17.009 (16.862)	46.363 (45.813)	94.739 (94.442)
TZ3P(2f,2d)+2diff CAS I	0.0	17.009 (16.863)	46.369 (45.818)	94.768 (94.468)
TZ2P CAS II	0.0	18.670 (18.545)	51.879 (51.321)	93.103 (92.860)
TZ2P+diff CAS II	0.0	18.709 (18.584)	51.931 (51.371)	93.164 (92.922)
TZ3P CAS II	0.0	18.874 (18.717)	51.970 (51.372)	93.808 (93.510)
TZ3P+2diff CAS II	0.0	18.886 (18.727)	51.970 (51.369)	93.803 (93.507)
TZ2P(f,d) CAS II	0.0	18.680 (18.528)	50.006 (49.449)	93.404 (93.141)
TZ2P(f,d)+diff CAS II	0.0	18.705 (18.552)	50.051 (49.492)	93.460 (93.195)
TZ3P(2f,2d) CAS II	0.0	18.940 (18.793)	50.062 (49.512)	93.902 (93.605)
TZ3P(2f,2d)+2diff CAS II	0.0	18.937 (18.791)	50.070 (49.519)	93.926 (93.626)
experimental ${ }^{33}$	0.0	(16.1-18.4)	(~ 44.3)	

${ }^{a}$ Reference wave function.
TABLE 8: Relative Energies T_{e} (in $\mathrm{kcal} / \mathrm{mol}, T_{0}$ Value in Parentheses) Using CISD and CASSCF MRCI (CAS I MRCI I and CAS II MRCI II) Methods for Several Electronic States of the $\mathbf{P H}_{2}^{+}$Molecule

level of theory	$\tilde{\mathrm{X}}^{1} \mathrm{~A}_{1}$ TCSCF $^{\text {a }}$	$\tilde{\mathrm{a}}^{3} \mathrm{~B}_{1} \mathrm{SCF}^{a}$	$\tilde{\mathrm{A}}^{1} \mathrm{~B}_{1} \mathrm{SCF}^{a}$	$\tilde{\mathrm{B}}^{1} \mathrm{~A}_{1} \mathrm{TCSCF}^{a}$
TZ2P CISD	0.0	16.872 (16.747)	48.276 (47.718)	88.616 (88.373)
TZ2P+diff CISD	0.0	16.928 (16.803)	48.343 (47.783)	88.688 (88.446)
TZ3P CISD	0.0	17.125 (16.968)	48.432 (47.834)	89.169 (88.871)
TZ3P+2diff CISD	0.0	17.145 (16.986)	48.432 (47.831)	89.178 (88.882)
TZ2P(f,d) CISD	0.0	17.892 (17.740)	47.471 (46.914)	87.357 (87.094)
TZ2P(f,d)+diff CISD	0.0	17.927 (17.774)	47.526 (46.967)	87.427 (87.162)
TZ3P(2f,2d) CISD	0.0	18.234 (18.087)	47.510 (46.960)	87.809 (87.512)
TZ3P(2f,2d) + 2 diff CISD	0.0	18.237 (18.091)	47.523 (46.972)	87.839 (87.539)
TZ2P CAS I SOCI	0.0	16.352 (16.227)	46.934 (46.376)	86.357 (86.114)
TZ2P+diff CAS I SOCI	0.0	16.409 (16.284)	47.001 (46.441)	86.421 (86.179)
TZ3P CAS I SOCI	0.0	16.591 (16.434)	47.058 (46.460)	86.801 (86.503)
TZ3P+2diff CAS I SOCI	0.0	16.610 (16.451)	47.057 (46.456)	86.807 (86.511)
TZ2P(f,d) CAS I SOCI	0.0	17.205 (17.053)	45.922 (45.365)	84.759 (84.496)
TZ2P(f,d)+diff CAS I SOCI	0.0	17.241 (17.088)	45.975 (45.416)	84.821 (84.556)
TZ3P(2f,2d) CAS I SOCI	0.0	17.524 (17.377)	45.921 (45.371)	85.088 (84.791)
TZ3P(2f,2d)+2diff CAS I SOCI	0.0	17.529 (17.383)	45.932 (45.381)	85.117 (84.817)
TZ2P CAS II SOCI	0.0	16.599 (16.474)	47.246 (46.688)	86.547 (86.304)
TZ2P+diff CAS II SOCI	0.0	16.658 (16.533)	47.313 (46.753)	86.611 (86.369)
TZ3P CAS II SOCI	0.0	16.851 (16.694)	47.383 (46.785)	86.963 (86.665)
TZ3P+2diff CAS II SOCI	0.0	16.871 (16.712)	47.382 (46.781)	86.969 (86.673)
TZ2P(f,d) CAS II SOCI	0.0	17.537 (17.385)	46.333 (45.776)	84.990 (84.727)
TZ2P(f,d)+diff CAS II SOCI	0.0	17.574 (17.421)	46.387 (45.828)	85.052 (84.787)
TZ3P(2f,2d) CAS II SOCI	0.0	17.882 (17.735)	46.359 (45.809)	85.322 (85.025)
TZ3P(2f,2d)+2diff CAS II SOCI	0.0	17.886 (17.740)	46.370 (45.819)	85.350 (85.050)
experimental ${ }^{33}$	0.0	(16.1-18.4)	(~ 44.3)	

of any of the electronic states of PH_{2}^{+}, it is difficult to quantify the quality of these predictions. It is reasonable to expect, though, that at the largest basis CISD level, the bond lengths found in this research are slightly underestimated.

The bond length of the $\tilde{\mathrm{a}}^{3} \mathrm{~B}_{1}$ state is predicted to be 1.403 \AA, and the bond angle lies at 121.7°. This bond angle is approximately 32° smaller than that of the $\tilde{X}^{3} \mathrm{~B}_{1}$ state of $\mathrm{NH}_{2}^{+} .{ }^{41}$ Again, Balasubramanian ${ }^{18}$ arrived at a longer r_{e} of $1.416 \AA$. However, our θ_{e} value is in good agreement with his prediction of 121.8°, showing that there is little change in bond angle when correlation above the CISD level is included.

The bond length of the $\tilde{\mathrm{A}}^{1} \mathrm{~B}_{1}$ state is predicted to be 1.417
\AA, and the bond angle lies at 124.7°. The bond length and bond angle predicted by Balasubramanian were $1.431 \AA$ and 124.0°, respectively. The predicted θ_{e} is significantly smaller (by 38°) than that of the $\tilde{\mathrm{b}}^{1} \mathrm{~B}_{1}$ state of $\mathrm{NH}_{2}^{+}{ }^{41}$ The corresponding values arrived at by Bauer et al. were $r_{\mathrm{e}}=1.427 \AA$ and $\theta_{\mathrm{e}}=$ 124.5°. Here we see the same trends in bond length as we saw above; however, now it appears that correlation has a larger affect on the bond angle, as evidenced by the larger difference between the angle predicted by the previous multireference CI methods and that predicted in this study.

The bond length of the $\tilde{\mathrm{B}}^{1} \mathrm{~A}_{1}$ state is predicted to be 1.411 \AA, and the bond angle lies at 159.3°. On the basis of the above
trends, accepting the geometry predictions of Bauer et al. and Balasubramanian, we can reasonably expect the bond length to be $\sim 1 \%$ longer and the bond angle to be, at most, in error by 0.5%. In the second ${ }^{1} \mathrm{~A}_{1}$ state of CH_{2}, the anharmonicity of the bending potential (because the barrier to linearity is only a few cm^{-1}) necessitates the use of high levels of correlation to accurately approach the full CI values for θ_{e} as well as the symmetric bending frequency. ${ }^{4,12,69,70}$ In the $\tilde{\mathrm{B}}{ }^{1} \mathrm{~A}_{1}$ state of PH_{2}^{+}, on the other hand, whose bond angle is much smaller (by $\sim 12^{\circ}$) than that of $\tilde{\mathrm{c}}^{1} \mathrm{~A}_{1} \mathrm{CH}_{2}$, it is more reasonable to assume that the CISD predictions for both θ_{e} and the symmetric bending frequency are fairly reliable. We estimate the barrier to linearity to be approximately $2.5 \mathrm{kcal} / \mathrm{mol}\left(880 \mathrm{~cm}^{-1}\right)$ based on TZ2P CISD calculations of the equilibrium geometries of both linear $\tilde{\mathrm{B}}^{1} \Sigma_{\mathrm{g}}^{+} \mathrm{PH}_{2}^{+}$and bent $\tilde{\mathrm{B}}^{1} \mathrm{~A}_{1} \mathrm{PH}_{2}^{+}$. Therefore, while the frequency for bending in the state is still larger than the barrier to linearity, the situation is much improved over that of the \tilde{c} state of CH_{2}. Another interesting observation is the fact that the equilibrium geometry of the $\tilde{\mathrm{B}}^{1} \mathrm{~A}_{1}$ state is not linear like its second-row analogue, $\tilde{\mathrm{c}}^{1} \Sigma_{\mathrm{g}}^{+} \mathrm{NH}_{2}^{+41} \cdot \tilde{\mathrm{X}}$ If we consider the $\tilde{\mathrm{B}}^{1} \mathrm{~A}_{1}$ state a double excitation from the $\tilde{\mathrm{X}}{ }^{1} \mathrm{~A}_{1}$ state, then the orbital which most affects the geometry (according to the Walsh diagram for AH_{2} molecules) would be the $2 \mathrm{~b}_{2}$, which prefers a linear geometry. But because of the decreased ability of the P orbitals to participate in sp-mixing (relative to N), this orbital may not be as influential, and the molecule remains bent.

The ordering of the bond lengths is slightly different here than in methylene's case. ${ }^{4,12}$ For CH_{2} at the same level of theory as presented here, the ordering was found to be (r_{e} values in \AA)

$$
\begin{equation*}
\tilde{\mathrm{a}}^{1} \mathrm{~A}_{1}(1.105)>\tilde{\mathrm{X}}^{3} \mathrm{~B}_{1}(1.075)>\tilde{b}^{1} \mathrm{~B}_{1}(1.071)>\tilde{\mathrm{c}}^{1} \mathrm{~A}_{1} \tag{1.064}
\end{equation*}
$$

In PH_{2}^{+}, we find that
$\tilde{\mathrm{A}}{ }^{1} \mathrm{~B}_{1}(1.417)>\tilde{\mathrm{X}}^{1} \mathrm{~A}_{1}(1.415)>\tilde{\mathrm{B}}^{1} \mathrm{~A}_{1}(1.411)>\tilde{\mathrm{a}}^{3} \mathrm{~B}_{1}$

This is a very narrow range indeed, and it seems that the bond length changes little upon electronic excitation. This should, as shown below, have some ramifications on the harmonic vibrational frequencies. Additionally, one should note that with the addition of correlation by the CISD method, the bond length increased by $0.01 \AA$ or less for all four states. The ordering of the bond angles follows as

$$
\begin{equation*}
\tilde{\mathrm{B}}^{1} \mathrm{~A}_{1}(159.3)>\tilde{\mathrm{A}}^{1} \mathrm{~B}_{1}(124.7)>\tilde{\mathrm{a}}^{3} \mathrm{~B}_{1}(121.7)>\tilde{\mathrm{X}}^{1} \mathrm{~A}_{1} \tag{93.1}
\end{equation*}
$$

This both follows the ordering in $\mathrm{CH}_{2}{ }^{12}$ and is an example of Walsh's rules. ${ }^{71}$ When the $5 \mathrm{a}_{1}$ orbital is doubly occupied as the highest occupied molecular orbital, the molecule is bent ($\tilde{\mathrm{X}}^{1} \mathrm{~A}_{1}$). Single excitations from the $5 \mathrm{a}_{1}$ orbital into the $2 \mathrm{~b}_{1}$ orbital, which is perpendicular to the molecular plane, allow the $2 \mathrm{~b}_{2}$ orbital to have more influence on the geometry, and the angle widens ($\tilde{\mathrm{a}}^{3} \mathrm{~B}_{1}$ and $\tilde{\mathrm{A}}^{1} \mathrm{~B}_{1}$). Double excitations ($\tilde{\mathrm{B}}^{1} \mathrm{~A}_{1}$) increase the angle further. Also note that electron correlation provided by the CISD method serves to increase the bond angle in the $\tilde{\mathrm{a}}^{3} \mathrm{~B}_{1}$ and $\tilde{\mathrm{B}}^{1}{ }_{\tilde{\mathrm{A}}} \mathrm{A}_{1}$ states, while it decreases the bond angle of the $\tilde{X}^{1} \mathrm{~A}_{1}$ and $\tilde{\mathrm{A}}{ }^{1} \mathrm{~B}_{1}$ states.
B. Dipole Moments. At the $\operatorname{TZ3P}(2 f, 2 d)+2 d i f f ~ C I S D ~ o r ~$ TC-CISD level of theory, the four electronic states of PH_{2}^{+} had dipole moments (shown in Tables 1-4) with the following magnitudes: $1.056 \mathrm{D}\left(\tilde{\mathrm{X}}^{1} \mathrm{~A}_{1}\right), 0.653 \mathrm{D}\left(\tilde{\mathrm{a}}^{3} \mathrm{~B}_{1}\right), 0.751 \mathrm{D}\left(\tilde{\mathrm{A}}^{1} \mathrm{~B}_{1}\right)$, and $0.324 \mathrm{D}\left(\tilde{\mathrm{B}}^{1} \mathrm{~A}_{1}\right)$. They all have the same sign, $\mathrm{P}^{+} \mathrm{H}^{-}$, as the cation is largely created by removing an electron from the
$2 \mathrm{~b}_{1}$ orbital (centered on P) from the PH_{2} radical. The relatively large dipole moments (which were calculated relative to the center of mass) of these states should make microwave spectroscopic investigations possible, if the cations can be isolated in significant quantities in the gas phase. It should be noted that the dipole moments predicted for the $\tilde{\mathrm{B}}{ }^{1} \mathrm{~A}_{1}$ state are expectation values of the dipole moment operator, while those determined for the other three states are gradient corrected. The $\tilde{\mathrm{a}}^{3} \mathrm{~B}_{1}$ and $\tilde{\mathrm{A}}^{1} \mathrm{~B}_{1}$ dipoles are similar due to the fact that they have very similar geometries and electronic configurations (i.e. they only differ in spin symmetry). The ground state has a much larger dipole due to the additional electron in the $5 a_{1}$ orbital which creates a much smaller ($\sim 30^{\circ}$ smaller) bond angle than either the $\tilde{\mathrm{a}}^{3} \mathrm{~B}_{1}$ or the $\tilde{\mathrm{A}}^{1} \mathrm{~B}_{1}$ states. The $\tilde{\mathrm{B}}{ }^{1} \mathrm{~A}_{1}$ has a much smaller dipole moment due to its large bond angle of $\sim 160^{\circ}$, which is attributable to the additional electron in the $2 b_{1}$ orbital. Correlation effects tend to decrease the dipole moment by approximately 0.02 D for the $\tilde{\mathrm{B}}{ }^{1} \mathrm{~A}_{1}$ state, while they tend to increase the dipole of the $\tilde{\mathrm{X}}^{1} \mathrm{~A}_{1}, \tilde{a}^{3} \mathrm{~B}_{1}$, and $\tilde{\mathrm{A}}{ }^{1} \mathrm{~B}_{1}$ states by $0.02-0.08 \mathrm{D}$.
C. Harmonic Vibrational Frequencies. Without experimental data, it is difficult to determine the accuracy of the frequency predictions presented here. However, using the same levels of theory on SiH_{2} and CH_{2}-two systems for which there are quite a few experimental fundamentals known-Yamaguchi et al. ${ }^{12},{ }^{72}$ were able to determine that at the $\operatorname{TZ3P}(2 f, 2 d)+2$ diff CISD level of theory there is an error of approximately 5% or less between experimental and theoretical vibrational frequencies. Larger errors occur only when anharmonic effects are particularly large. ${ }^{4}$ For PH_{2}^{+}, it is reasonable to assume that anharmonicity should not play as large a role, except in the $\tilde{\mathrm{B}}{ }^{1} \mathrm{~A}_{1}$ state bending potential, as the bond angles and bond lengths are not inordinately wide or long, respectively.

The study by Bauer et al. ${ }^{40}$ is the most reliable source for harmonic vibrational frequencies of the ground and second excited electronic states. Our largest basis CISD predicted harmonic vibrational frequencies for the $\tilde{\mathrm{X}}^{1} \mathrm{~A}_{1}$ state of $\omega_{1}\left(\mathrm{a}_{1}\right)$ $=2457 \mathrm{~cm}^{-1}, \omega_{2}\left(\mathrm{a}_{1}\right)=1155 \mathrm{~cm}^{-1}$, and $\omega_{3}\left(\mathrm{~b}_{2}\right)=2467 \mathrm{~cm}^{-1}$ are within 4% of those of Bauer et al. $\left(\omega_{1}\left(\mathrm{a}_{1}\right)=2399 \mathrm{~cm}^{-1}\right.$, $\omega_{2}\left(\mathrm{a}_{1}\right)=1113 \mathrm{~cm}^{-1}$, and $\omega_{3}\left(\mathrm{~b}_{2}\right)=2413 \mathrm{~cm}^{-1}$.

Our predictions for the vibrational frequencies of the $\tilde{a}^{3} B_{1}$ state are $\omega_{1}\left(\mathrm{a}_{1}\right)=2452 \mathrm{~cm}^{-1}, \omega_{2}\left(\mathrm{a}_{1}\right)=997 \mathrm{~cm}^{-1}$, and $\omega_{3}\left(\mathrm{~b}_{2}\right)$ $=2528 \mathrm{~cm}^{-1}$. The only other published frequencies for this particular state were by Berkowitz et al., ${ }^{32}$ who added theoretical harmonic vibrational frequencies at the HF/6-31G* level to help interpret their photoionization spectra of $\mathrm{PH}_{2}^{+}\left(\mathrm{PH}_{2}\right)$. Naturally, at the HF level, the frequencies were quite a bit higher.

Our predictions for the vibrational frequencies of the $\widetilde{A}^{1} \mathrm{~B}_{1}$ state are $\omega_{1}\left(\mathrm{a}_{1}\right)=2331 \mathrm{~cm}^{-1}, \omega_{2}\left(\mathrm{a}_{1}\right)=965 \mathrm{~cm}^{-1}$, and $\omega_{3}\left(\mathrm{~b}_{2}\right)$ $=2397 \mathrm{~cm}^{-1}$. These values are within 5.5% of those of Bauer et al. $\left(\omega_{1}\left(\mathrm{a}_{1}\right)=2259 \mathrm{~cm}^{-1}, \omega_{2}\left(\mathrm{a}_{1}\right)=914 \mathrm{~cm}^{-1}\right.$, and $\omega_{3}\left(\mathrm{~b}_{2}\right)=$ $2292 \mathrm{~cm}^{-1}$).

At the largest basis CISD level of theory, PH_{2}^{+}symmetric stretching ($\omega_{1}\left(\mathrm{a}_{1}\right)$) frequencies (in cm^{-1}) are in the order of

$$
\begin{equation*}
\tilde{\mathrm{X}}^{1} \mathrm{~A}_{1}(2457)>\tilde{\mathrm{a}}^{3} \mathrm{~B}_{1}(2452)>\tilde{\mathrm{B}}^{1} \mathrm{~A}_{1}(2340)>\tilde{\mathrm{A}}^{1} \mathrm{~B}_{1} \tag{2331}
\end{equation*}
$$

while the ordering of the asymmetric stretching $\left(\omega_{3}\left(b_{2}\right)\right)$ frequencies is

$$
\begin{equation*}
\tilde{\mathrm{a}}^{3} \mathrm{~B}_{1}(2528)>\tilde{\mathrm{B}}^{1} \mathrm{~A}_{1}(2470)>\tilde{\mathrm{X}}^{1} \mathrm{~A}_{1}(2467)>\tilde{\mathrm{A}}^{1} \mathrm{~B}_{1} \tag{2397}
\end{equation*}
$$

The orderings of $\omega_{3}\left(\mathrm{~b}_{2}\right)$ are in line with Badger's prediction ${ }^{73,74}$ that the larger vibrational frequency can be associated with the
shorter bond length. The $\tilde{\mathrm{X}}^{1} \mathrm{~A}_{1}$ symmetric stretching frequency does not follow this notion; however, as stated above, the range of bond lengths is very narrow; thus it is possible that there may be some imperfections in the ordering of the frequencies. The bending mode $\left(\omega_{2}\left(\mathrm{a}_{1}\right)\right)$ shows the following ordering
$\tilde{X}^{1} \mathrm{~A}_{1}(1155)>\tilde{\mathrm{B}}^{1} \mathrm{~A}_{1}(1060)>\tilde{\mathrm{a}}^{3} \mathrm{~B}_{1}(997)>\tilde{\mathrm{A}}^{1} \mathrm{~B}_{1}(965)$
Here we see the $\omega_{2}\left(\mathrm{a}_{1}\right)$ of the $\tilde{\mathrm{B}}^{1} \mathrm{~A}_{1}$ state (whose bond angle is much greater than the other three) is out of order according to the usual expectation that smaller bond angles lead to larger vibrational frequencies. This is not too unusual, as bending modes do not always follow the same trends as stretching frequencies. The experimental bending fundamental ${ }^{31}$ estimated from Edwards' et al. laser photodissociation of PH_{2}^{+}is most likely given a value that is too high.
D. Infrared (IR) Intensities. All three of the vibrational IR intensities of the ground state ($\tilde{\mathrm{X}}^{1} \mathrm{~A}_{1}$) of PH_{2}^{+}are rather small, and it would be very difficult to obtain the IR spectrum of this species even if it could be produced in significant amounts. On the other hand, the intensities of the $\omega_{1}\left(\mathrm{a}_{1}\right)$ and $\omega_{3}\left(b_{2}\right)$ modes of the $\tilde{\mathrm{a}}^{3} \mathrm{~B}_{1}$ state are relatively large. Even though the $\tilde{a}^{3} \mathrm{~B}_{1} \leftarrow \tilde{\mathrm{X}}{ }^{1} \mathrm{~A}_{1}$ transition is electronically forbidden, an IR spectrum of the $\tilde{\mathrm{a}}^{3} \mathrm{~B}_{1}$ state should be obtained if it is produced in sufficient quantity. While the IR intensity of the bending mode of $\tilde{\mathrm{A}}^{1} \mathrm{~B}_{1} \mathrm{PH}_{2}^{+}$is very weak, the symmetric and asymmetric stretching modes have large intensities, and should be rather easy to detect by IR techniques. Both the symmetric stretching and the bending frequencies have low intensities, leaving only the asymmetric frequency (whose IR intensity is predicted to be very large) of the $\tilde{\mathrm{B}}^{1} \mathrm{~A}_{1}$ electronic state probable for IR investigation.
E. Energetics. 1. $\tilde{\mathrm{a}}^{3} \mathrm{~B}_{1} \leftarrow \tilde{\mathrm{X}}^{1} \mathrm{~A}_{1}$ Separation. The experimental data provided by Berkowitz et al. ${ }^{33}$ gives a singlettriplet splitting (T_{0} value) of $16.1-18.4 \mathrm{kcal} / \mathrm{mol}(0.70-0.80$ $\mathrm{eV}, 5630-6440 \mathrm{~cm}^{-1}$). The extensive geometry optimizations of the ground and first two excited states of PH_{2}^{+}by Balasubramanian ${ }^{18}$ at the CASSCF-SOCI ($6 \mathrm{e}^{-} / 6 \mathrm{MO}$) level of theory, in principle, should be very accurate. His prediction for the singlet-triplet separation (T_{e} value) was $17.73 \mathrm{kcal} /$ mol, which falls near the high end of the experimental range. With the largest basis set, nearly all levels of theory employed in this study, with the exception of the CISD and CAS II levels which appear to be overestimating the energy difference, fall within the experimental limits. Surprisingly, the SCF prediction is right in line with Balasubramanian's values. The agreement between the SCF and CASSCF levels of theory and experiment is most likely fortuitous, as these methods have not been shown to accurately predict energy separations. The CAS II SOCI method predicts a T_{e} value of $17.89 \mathrm{kcal} / \mathrm{mol}$, which is only a $0.2 \mathrm{kcal} / \mathrm{mol}$ difference from Balasubramanian's prediction. In the case of SiH_{2} and $\mathrm{CH}_{2},{ }^{12,72}$ the CASSCF-SOCI energy separations (T_{0}, at CISD geometries), were in error from experiment by $0.7 \mathrm{kcal} / \mathrm{mol}$ or less. It is reasonable to assume the same error bars on our T_{0} prediction of $17.74 \mathrm{kcal} / \mathrm{mol}(0.77$ $\mathrm{eV}, 6200 \mathrm{~cm}^{-1}$) for the $\tilde{\mathrm{a}}^{3} \mathrm{~B}_{1} \leftarrow \tilde{\mathrm{X}}{ }^{1} \mathrm{~A}_{1}$ splitting of the isovalent PH_{2}^{+}molecule. It is also reasonable to assume that the experimental value of $16.1 \mathrm{kcal} / \mathrm{mol}$ is probably too low and that a more appropriate lower bound would be $17.0 \mathrm{kcal} / \mathrm{mol}$.
2. $\tilde{\mathrm{A}}{ }^{1} \mathrm{~B}_{1} \leftarrow \tilde{\mathrm{X}} \tilde{\sim}^{1} \mathrm{~A}_{1}$ Separation. The experimentally estimated T_{0} value of the $\tilde{\mathrm{A}}{ }^{1} \mathrm{~B}_{1}$ state is $44.3 \mathrm{kcal} / \mathrm{mol} .{ }^{33}$ All levels of theory employed in this study overestimate this value. However, the largest basis set CAS II SOCI T_{e} value, $46.37 \mathrm{kcal} / \mathrm{mol}$, is in fair agreement with Balasubramanian's prediction of 45.06 $\mathrm{kcal} / \mathrm{mol} .{ }^{18}$ Bauer et al. predicted a T_{e} value of $45.49 \mathrm{kcal} /$
mol. The significant ZPVE difference between the $\tilde{X}^{1} \mathrm{~A}_{1}$ and $\tilde{\mathrm{A}}^{1} \mathrm{~B}_{1}$ states provides a large correction to the T_{e} value, and the resulting prediction for T_{0} is $45.82 \mathrm{kcal} / \mathrm{mol}(1.99 \mathrm{eV}, 16030$ cm^{-1}). Again, with a similar basis set and level of theory, Yamaguchi et al. were able to estimate the $\tilde{\mathrm{A}}^{1} \mathrm{~B}_{1} \leftarrow \tilde{\mathrm{X}}^{1} \mathrm{~A}_{1}$ separation of $\mathrm{CH}_{2}\left(T_{0}\right)$ within $0.5 \mathrm{kcal} / \mathrm{mol}$ of the experimental value. Therefore, this is a reasonable error bar to apply in this case also.
3. $\tilde{\mathrm{B}}^{1} \mathrm{~A}_{1} \leftarrow \tilde{\mathrm{X}}{ }_{\tilde{1}}{ }^{1} \mathrm{~A}_{1}$ Separation. Correlation has a dramatic affect on the $T_{\mathrm{e}}\left(\tilde{\mathrm{B}}^{1} \mathrm{~A}_{1}\right)$ value, decreasing it by as much as 20 $\mathrm{kcal} / \mathrm{mol}$. At the highest level of theory (CAS II SOCI) the T_{0} value for the $\tilde{\mathrm{B}}{ }^{1} \mathrm{~A}_{1}$ state of PH_{2}^{+}is predicted to be $85.05 \mathrm{kcal} /$ $\mathrm{mol}\left(3.69 \mathrm{eV}, 29750 \mathrm{~cm}^{-1}\right.$). To our knowledge, this is the first theoretical determination of the $\tilde{\mathrm{B}}^{1} \mathrm{~A}_{1} \leftarrow \tilde{\mathrm{X}}{ }^{1} \mathrm{~A}_{1}$ separation, and no experimental values for this quantity exist. In previous studies of the second ${ }^{1} \mathrm{~A}_{1}$ state of SiH_{2} and CH_{2}, the estimated error in the T_{0} value for these states was found to be $\pm 1.5 \mathrm{kcal} /$ mol. While there had been no experimental values for these predictions, it was possible to estimate the error based on the CASSCF-SOCI method's performance on the $\tilde{\mathrm{a}}^{3} \mathrm{~B}_{1} \leftarrow \tilde{\mathrm{X}}{ }^{1} \mathrm{~A}_{1}$ and $\tilde{\mathrm{A}}^{1} \mathrm{~B}_{1} \leftarrow \tilde{\mathrm{X}}^{1} \mathrm{~A}_{1}$ separations as well as a consideration of the increased error due to the flatter bending potentials of the second ${ }^{1} \mathrm{~A}_{1}$ state. Due to the similarity between this study and the previous works on related molecules ${ }^{12,72}$ it is possible to give a reliable estimate of the error in our prediction as ± 1.5 $\mathrm{kcal} / \mathrm{mol}\left(\pm 525 \mathrm{~cm}^{-1}\right)$.
4. Ionization Potentials. As a further aid to experimentalists searching for the PH_{2} cation using, for example, photoelectron spectroscopy, adiabatic and vertical ionization potentials ($\mathrm{IP}_{\mathrm{ad}}$ and $\left.\mathrm{IP}_{\text {vert }}\right)$ were determined at the $\operatorname{TZ3P}(2 \mathrm{f}, 2 \mathrm{~d})+2$ diff CISD level of theory for the $\mathrm{PH}_{2} \rightarrow \mathrm{PH}_{2}^{+}+\mathrm{e}^{-}$ionization. The $\tilde{\mathrm{X}}^{2} \mathrm{~B}_{1}$ state of PH_{2} molecule at this level of theory has an r_{e} value of 1.413 \AA and a θ_{e} value of 92.21°. The zero-point-corrected first $\mathrm{IP}_{\mathrm{ad}}$ (i.e. from the $\tilde{\mathrm{X}}^{2} \mathrm{~B}_{1}$ state of PH_{2} to the $\tilde{\mathrm{X}}^{1} \mathrm{~A}_{1}$ state of PH_{2}^{+}) was found to be $220.3 \mathrm{kcal} / \mathrm{mol}\left(9.55 \mathrm{eV}, 77110 \mathrm{~cm}^{-1}\right)$. This is in reasonable agreement with the experimental value of 9.82 eV determined by Berkowitz et al. ${ }^{33}$ The predicted value for the first (non ZPVE corrected) $\mathrm{IP}_{\text {vert }}$ is $220.3 \mathrm{kcal} / \mathrm{mol}$ (9.55 $\mathrm{eV}, 77110 \mathrm{~cm}^{-1}$). The near equality of the $\mathrm{IP}_{\mathrm{ad}}$ and $\mathrm{IP}_{\text {vert }}$ values is a byproduct of the fact that the ground state geometries of both the molecule and the cation are very similar. The next $\mathrm{IP}_{\mathrm{ad}}\left(\tilde{\mathrm{a}}^{3} \mathrm{~B}_{1} \mathrm{PH}_{2}^{+} \leftarrow \tilde{\mathrm{X}}^{2} \mathrm{~B}_{1} \mathrm{PH}_{2}\right)$ is predicted to lie at $238.4 \mathrm{kcal} /$ $\mathrm{mol}\left(10.34 \mathrm{eV}, 83440 \mathrm{~cm}^{-1}\right.$). The experimental value lies between 10.52 and $10.62 \mathrm{eV} .{ }^{33}$ The $\mathrm{IP}_{\text {vert }}$ value for this transition is $250.4 \mathrm{kcal} / \mathrm{mol}\left(10.86 \mathrm{eV}, 87640 \mathrm{~cm}^{-1}\right)$. The next $\mathrm{IP}_{\mathrm{ad}}\left(\tilde{\mathrm{A}}^{1} \mathrm{~B}_{1} \mathrm{PH}_{2}^{+} \leftarrow \tilde{\mathrm{X}}^{2} \mathrm{~B}_{1} \mathrm{PH}_{2}\right)$ is predicted to be $267.8 \mathrm{kcal} /$ $\mathrm{mol}\left(11.61 \mathrm{eV}, 93730 \mathrm{~cm}^{-1}\right)$, and the $\mathrm{IP}_{\text {vert }}$ is $282.1 \mathrm{kcal} / \mathrm{mol}$ ($12.23 \mathrm{eV}, 98740 \mathrm{~cm}^{-1}$). The final predicted $\mathrm{IP}_{\mathrm{ad}}\left(\tilde{\mathrm{B}}^{1} \mathrm{~A}_{1}\right.$ $\left.\mathrm{PH}_{2}^{+} \leftarrow \tilde{\mathrm{X}}^{2} \mathrm{~B}_{1} \mathrm{PH}_{2}\right)$ is $307.9 \mathrm{kcal} / \mathrm{mol}(13.35 \mathrm{eV}, 107800$ cm^{-1}), and the $\mathrm{IP}_{\text {vert }}$ value is $361.2 \mathrm{kcal} / \mathrm{mol}(15.66 \mathrm{eV}, 126400$ cm^{-1}). The increase in differences between vertical and adiabatic ionization potentials reflects the increase in the bond angle of PH_{2}^{+}with electronic excitation.

V. Conclusions

Four low-lying electronic states of PH_{2}^{+}have been systematically investigated. Several high levels of ab initio electronic structure theory have been applied in an effort to provide experimentalists with reliable energetic and spectroscopic parameters. The abundance of information provided herein will also aid theoreticians in making reliable estimates about energetic and geometric characteristics when very high levels of theory cannot be used. All four states are determined to have bent equilibrium structures with $C_{2 v}$ symmetry. As in $\mathrm{SiH}_{2},{ }^{72}$ the bond angles of these states are considerably smaller than those of the corresponding states of both CH_{2} and NH_{2}^{+}.
$\tilde{\mathrm{X}}{ }^{1} \mathrm{~A}_{1}, \tilde{\mathrm{a}}^{3} \mathrm{~B}_{1}, \tilde{\mathrm{~A}}^{1} \mathrm{~B}_{1}$, and $\tilde{\mathrm{B}}^{1} \mathrm{~A}_{1}$ States of $\mathrm{PH}_{2}{ }^{+}$
TABLE 9: Largest Basis (TC)CISD Geometries for Four Low-Lying Electronic States of $\mathbf{C H}_{\mathbf{2}}, \mathbf{N H}_{\mathbf{2}}^{+}, \mathbf{S i H}_{\mathbf{2}}$, and $\mathbf{P H}_{\mathbf{2}}^{+}{ }^{\boldsymbol{a}}$

molecule	$1{ }^{1} \mathrm{~A}_{1}$		${ }^{3} \mathrm{~B}_{1}$		${ }^{1} \mathrm{~B}_{1}$		$2{ }^{1} \mathrm{~A}_{1}$	
	$r_{\text {e }}$	$\theta_{\text {e }}$						
$\mathrm{CH}_{2}{ }^{12}$	1.105	102.3	1.075	132.9	1.071	142.9	1.064	171.6
NH_{2}^{+41}	1.044	108.2	1.027	150.5	1.027	161.4	1.030	180.0
$\mathrm{SiH}_{2}{ }^{72}$	1.505	92.9	1.469	118.2	1.473	122.9	1.450	160.8
PH_{2}^{+}	1.415	93.1	1.403	121.7	1.417	124.7	1.411	159.3

${ }^{a}$ Bond lengths are in angstroms, and bond angles are in degrees.
This follows the expectation that hybridization of the A atom orbitals in AH_{2} molecules decreases as a group is descended in the periodic table. Table 9 is included as an aid to show this trend. Included are the geometrical parameters predicted for $\mathrm{CH}_{2},{ }^{12} \mathrm{NH}_{2}^{+},{ }^{41} \mathrm{SiH}_{2},{ }^{72}$ and PH_{2}^{+}at similar levels of theory.

The T_{0} values for the first excited state ($\tilde{\mathrm{a}}^{3} \mathrm{~B}_{1}$), the second excited state ($\tilde{\mathrm{A}}^{1} \mathrm{~B}_{1}$), and the third excited state ($\tilde{\mathrm{B}}^{1} \mathrm{~A}_{1}$) are predicted to be $17.74 \mathrm{kcal} / \mathrm{mol}\left(0.77 \mathrm{eV}, 6200 \mathrm{~cm}^{-1}\right), 45.82$ $\mathrm{kcal} / \mathrm{mol}\left(1.99 \mathrm{eV}, 16030 \mathrm{~cm}^{-1}\right)$, and $85.05 \mathrm{kcal} / \mathrm{mol}(3.69 \mathrm{eV}$, $29750 \mathrm{~cm}^{-1}$), respectively. The error bars for these values are estimated to be $\pm 0.5 \mathrm{kcal} / \mathrm{mol}\left(\tilde{\mathrm{a}}^{3} \mathrm{~B}_{1}\right), \pm 0.7 \mathrm{kcal} / \mathrm{mol}\left(\tilde{\mathrm{A}}^{1} \mathrm{~B}_{1}\right)$, and $\pm 1.5 \mathrm{kcal} / \mathrm{mol}\left(\tilde{\mathrm{B}}^{1} \mathrm{~A}_{1}\right)$, respectively.

Acknowledgment. T.V.H. would like to acknowledge Jeffrey C. Stephens for helpful discussions. This research was supported by the National Science Foundation, Grant CHE9527468.

References and Notes

(1) Herzberg, G. Proc. R. Soc. London Ser. A 1961, 262, 291.
(2) Foster, J. M.; Boys, S. F. Rev. Mod. Phys. 1960, 32, 305.
(3) Bender, C. F.; Schaefer, H. F. J. Amer. Chem. Soc. 1970, 92, 4984.
(4) Sherrill, C. D.; Van Huis, T. J.; Yamaguchi, Y.; Schaefer, H. F.

THEOCHEM, special issue on bench mark computations, in press. See methods and references therein.
(5) Petek, H.; Nesbitt, D. J.; Moore, C. B.; Birss, F. W.; Ramsay, D. A. J. Chem. Phys. 1987, 86, 1189.
(6) Duxbury, G.; Jungen, C. Mol. Phys. 1988, 63, 981.
(7) Jensen, P.; Bunker, P. R. J. Chem. Phys. 1988, 89, 1327.
(8) Comeau, D. C.; Shavitt, I.; Jensen, P.; Bunker, P. R. J. Chem. Phys. 1989, 90, 6491.
(9) Petek, H.; Nesbitt, D. J.; Darwin, D. C.; Ogilby, P. R.; Moore, C. B.; Ramsay, D. A. J. Chem. Phys. 1989, 91, 6566.
(10) Green, W. H.; Handy, N. C.; Knowles, P. J.; Carter, S. J. Chem. Phys. 1991, 94, 118.
(11) Woon, D. E.; Dunning, T. H. J. Chem. Phys. 1995, 103, 4572.
(12) Yamaguchi, Y.; Sherrill, C. D.; Schaefer, H. F. J. Phys. Chem. 1996, 100, 7911.
(13) Shavitt, I. Tetrahedron 1985, 41, 1531.
(14) Davidson, E. R.; Feller, D.; Phillips, P. Chem. Phys. Lett. 1980, 76, 416.
(15) Handy, N. C.; Yamaguchi, Y.; Schaefer, H. F. J. Chem. Phys. 1986, 84, 4481.
(16) Balasubramanian, K.; McLean, A. D. J. Chem. Phys. 1986, 85, 5117.
(17) Bauschlicher, C. W.; Langhoff, S. R.; Taylor, P. R. J. Chem. Phys. 1987, 87, 387.
(18) Balasubramanian, K. Chem. Phys. Lett. 1993, 204, 601.
(19) Balasubramanian, K.; Chung, Y. S.; Glaunsinger, W. S. J. Chem. Phys. 1993, 98, 8859.
(20) Cramer, C. J.; Dulles, F. J.; Storer, J. W.; Worthington, S. E. Chem. Phys. Lett. 1994, 218, 387.
(21) Karolczak, J.; Harper, W. W.; Grev, R. S.; Clouthier, D. J. J. Chem. Phys. 1995, 103, 2839.
(22) Vager, Z.; Naaman, R.; Kanter, E. P. In Ion and Cluster Ion Spectroscopy and Structure; Maier, J. P., Ed.; Elsevier Science Publishers B. V.: Amsterdam, The Netherlands, 1989.
(23) Turner, B. E.; Bally, J. Astrophys. J. Lett. 87, 321, L75.
(24) Ziurys, L. M. Astrophys. J. Lett. 1987, 321, L81.
(25) Ridgeway, S. T.; Wallace, L.; Smith, G. R. Astrophys. J. 1976, 207, 1002.
(26) Thorne, L. R.; Anicich, V. G.; Huntress, W. T. Chem. Phys. Lett. 1983, 98, 162.
(27) Smith, D.; McIntosh, B. J.; Adams, N. G. J. Chem. Phys. 1989, 90, 6213.
(28) Esseffar, M.; Luna, A.; Mó, O.; Yáñez, M. Chem. Phys. Lett. 1994, 223, 240.
(29) Parish, M. B. J. Electrochem. Soc. 1980, 127, 2729.
(30) Berkowitz, J. J. Chem. Phys. 1988, 89, 7065.
(31) Edwards, C. P.; Jackson, P. A.; MacLean, C. S.; Sarre, P. J. Bull. Soc. Chim. Belg. 1983, 92, 605.
(32) Berkowitz, J.; Curtiss, L. A.; Gibson, S. T.; Greene, J. P.; Hillhouse, G. L.; Pople, J. A. J. Chem. Phys. 1986, 84, 375.
(33) Berkowitz, J.; Cho, H. J. Chem. Phys. 1989, 90, 1.
(34) Ball, J. R.; Thomson, C. Int. J. Quantum Chem. 1978, 14, 39.
(35) Dyke, J. M.; Jonathan, N.; Morris, A. Int. Rev. Phys. Chem. 1982, 2, 22.
(36) Pople, J. A.; Curtiss, L. A. J. Phys. Chem. 1987, 91, 3637.
(37) Dunning, T. H. J. Chem. Phys. 1989, 90, 1007.
(38) Bruna, P. J.; Peyerimhoff, S. D. Bull. Soc. Chim. Belg. 1983, 92, 525.
(39) Bruna, P. J.; Hirsch, G.; Buenker, R. J.; Peyerimhoff, S. D. In Molecular Ions-Geometric and Electronic Structures; Berkowitz, J., Groeneveld, K. O., Eds.; Plenum: New York, 1983; Vol. 90, pp 309-354.
(40) Bauer, C.; Hirst, D. M.; Batey, A. D.; Sarre, P. J.; Rosmus, P. J. Chem. Soc., Faraday Trans. 1995, 91, 2053.
(41) Stephens, J. C.; Yamaguchi, Y.; Sherrill, C. D.; Schaefer, H. F. It should be noted that the basis set used in this work was similar in every way except that three sets of Cartesian d- and f-like functions were used (unpublished).
(42) McLean, A. D.; Chandler, G. S. J. Chem. Phys. 1980, 72, 5639.
(43) Huzinaga, S. Approximate Atomic Wavefunctions, Vol. II; Department of Chemistry: University of Alberta, 1971.
(44) Dunning, T. H. J. Chem. Phys. 1971, 55, 716.
(45) Huzinaga, S. J. Chem. Phys. 1965, 42, 1293.
(46) Lee, T. J.; Schaefer, H. F. J. Chem. Phys. 1985, 83, 1784.
(47) Pulay, P. Mol. Phys. 1969, 17, 197.
(48) Pulay, P. In Modern Theoretical Chemistry; Schaefer, H. F., Ed.; Plenum Press: New York, 1977; Vol. 4, pp 153-185.
(49) Yamaguchi, Y.; Osamura, Y.; Goddard, J. D.; Schaefer, H. F. A New Dimension to Quantum Chemistry: Analytic Derivative Methods in Ab Initio Molecular Electronic Structure Theory; Oxford University Press: New York, 1994.
(50) Saxe, P.; Yamaguchi, Y.; Schaefer, H. F. J. Chem. Phys. 1982, 77, 5647.
(51) Osamura, Y.; Yamaguchi, Y.; Saxe, P.; Vincent, M. A.; Gaw, J. F.; Schaefer, H. F. Chem. Phys. 1982, 72, 131.
(52) Osamura, Y.; Yamaguchi, Y.; Saxe, P.; Fox, D. J.; Vincent, M. A.; Schaefer, H. F. J. Mol. Struct. 1983, 103, 183.
(53) Yamaguchi, Y.; Frisch, M. J.; Gaw, J. F.; Schaefer, H. F.; Binkley, J. S. J. Chem. Phys. 1986, 84, 2262.
(54) Yamaguchi, Y.; Osamura, Y.; Schaefer, H. F. J. Am. Chem. Soc. 1983, 105, 7506.
(55) Yamaguchi, Y.; Frisch, M. J.; Lee, T. J.; Schaefer, H. F.; Binkley, J. S. Theor. Chim. Acta 1986, 69, 337.
(56) Brooks, B. R.; Laidig, W. D.; Saxe, P.; Goddard, J. D.; Yamaguchi, Y.; Schaefer, H. F. J. Chem. Phys. 1980, 72, 4652.
(57) Rice, J. E.; Amos, R. D.; Handy, N. C.; Lee, T. J.; Schaefer, H. F. J. Chem. Phys. 1986, 85, 963.
(58) Lee, T. J.; Allen, W. D.; Schaefer, H. F. J. Chem. Phys. 1987, 87, 7062.
(59) Allen, W. D.; Schaefer, H. F. J. Chem. Phys. 1987, 87, 7076.
(60) King, R. A.; Schaefer, H. F. Spectrochim. Acta, in press.
(61) Janssen, C. L.; Seidl, E. T.; Scuseria, G. E.; Hamilton, T. P.; Yamaguchi, Y.; Remington, R. B.; Xie, Y.; Vacek, G.; Sherrill, C. D.; Crawford, T. D.; Fermann, J. T.; Allen, W. D.; Brooks, B. R.; Fitzgerald, G. B.; Fox, D. J.; Gaw, J. F.; Handy, N. C.; Laidig, W. D.; Lee, T. J.; Pitzer, R. M; Rice, J. E.; Saxe, P.; Scheiner, A. C.; Schaefer, H. F. PSI 2.0.8.; PSITECH, Inc.: Watkinsville, GA 30677, 1995. This program is generally available for a handling fee of $\$ 100$.
(62) Siegbahn, P. E. M.; Heiberg, A.; Roos, B. O.; Levy, B. Phys. Scr. 1980, 21, 323.
(63) Roos, B. O.; Taylor, P. R.; Siegbahn, P. E. M. Chem. Phys. 1980, 48, 157.
(64) Roos, B. O. Int. J. Quantum Chem. 1980, S14, 175.
(65) Schaefer, H. F. Ph.D. Thesis, Department of Chemistry, Stanford University, Stanford, CA, April 1969.
(66) Yamaguchi, Y.; Schaefer, H. F. J. Chem. Phys. 1980, 73, 2310.
(67) Thomas, J. R.; DeLeeuw, B. J.; Vacek, G.; Crawford, T. D.; Yamaguchi, Y.; Schaefer, H. F. J. Chem. Phys. 1993, 99, 403.
(68) Besler, B. H.; Scuseria, G. E.; Scheiner, A. C.; Schaefer, H. F. J. Chem. Phys. 1988, 89, 360.
(69) Bunker, P. R.; Jensen, P.; Yamaguchi, Y.; Schaefer, H. F. J. Mol. Spectrosc. 1996, 179, 263.
(70) Bunker, P. R.; Jensen, P.; Yamaguchi, Y.; Schaefer, H. F. J. Phys. Chem. 1996, 100, 18088.
(71) Walsh, A. D. J. Chem. Soc. 1953, 2260.
(72) Yamaguchi, Y.; Van Huis, T. J.; Sherrill, C. D.; Schaefer, H. F. Spectrochim. Acta, in press.
(73) Badger, R. M. J. Chem. Phys. 1934, 2, 128.
(74) Badger, R. M. J. Chem. Phys. 1935, 3, 710.

[^0]: \dagger Abraham Baldwin graduate fellow.
 \ddagger Current address: Department of Chemistry, Box 308, University of California, Berkeley, CA 94270-1460.
 ${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, August 15, 1997.

